Skip to main content
Log in

Duplicated STM-like KNOX I genes act in floral meristem activity in Eschscholzia californica (Papaveraceae)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In angiosperms, the shoot apical meristem is at the origin of leaves and stems and is eventually transformed into the floral meristem. Class I knotted-like homeobox (KNOX I) genes are known as crucial regulators of shoot meristem formation and maintenance. KNOX I genes maintain the undifferentiated state of the apical meristem and are locally downregulated upon leaf initiation. In Arabidopsis, KNOX I genes, especially SHOOTMERISTEMLESS (STM), have been shown to regulate flower development and the formation of carpels. We investigated the role of STM-like genes in the reproductive development of Eschscholzia californica, to learn more about the evolution of KNOX I gene function in basal eudicots. We identified two orthologs of STM in Eschscholzia, EcSTM1 and EcSTM2, which are predominantly expressed in floral tissues. In contrast, a KNAT1/BP-like and a KNAT2/6-like KNOX I gene are mainly expressed in vegetative organs. Virus-induced gene silencing (VIGS) was used to knockdown gene expression, revealing that both EcSTM genes are required for the formation of reproductive organs. Silencing of EcSTM1 resulted in the loss of the gynoecium and a reduced number of stamens. EcSTM2-VIGS flowers had reduced and defective gynoecia and a stronger reduction in the number of stamen than observed in EcSTM1-VIGS. Co-silencing of both genes led to more pronounced phenotypes. In addition, silencing of EcSTM2 alone or together with EcSTM1 resulted in altered patterns of internodal elongation and sometimes in other floral defects. Our data suggest that some aspects of STM function present in Arabidopsis evolved already before the basal eudicots diverged from core eudicots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    PubMed  CAS  Google Scholar 

  • Alakonya A, Kumar R, Koenig D, Kimura S, Townsley B, Runo S, Garces HM, Kang J, Yanez A, David-Schwartz R, Machuka J, Sinha N (2012) Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism. Plant Cell 24:3153–3166

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Cantabrana H, Ripoll JJ, Ochando I, Vera A, Ferrandiz C, Martinez-Laborda A (2007) Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development 134:2663–2671

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Gleissberg S, Smyth D (2005) Floral and vegetative morphogenesis in California poppy (Eschscholzia californica Cham.). Int J Plant Sci 166:537–555

    Article  CAS  Google Scholar 

  • Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V (2006) KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 18:1900–1907

    Article  PubMed  CAS  Google Scholar 

  • Bharathan G, Goliber T, Moore C, Kessler S, Pham T, Sinha N (2002) Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296:1858–1860

    Article  PubMed  CAS  Google Scholar 

  • Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ (2012) Flower-specific KNOX phenotype in the orchid Dactylorhiza fuschsii. J Exp Bot 63:4811–4819

    Article  PubMed  CAS  Google Scholar 

  • Brand U, Grünewald M, Hobe M, Simon R (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129:565–575

    Article  PubMed  CAS  Google Scholar 

  • Champagne C, Sinha N (2004) Compound leaves: equal to the sum of their parts? Development 131:4401–4412

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    PubMed  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9:772

    Article  PubMed  CAS  Google Scholar 

  • Di Giacomo E, Sestili F, Iannelli MA, Testone G, Mariotti D, Frugis G (2008) Characterization of KNOX genes in Medicago truncatula. Plant Mol Biol 67:135–150

    Article  PubMed  Google Scholar 

  • Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD (2002) KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell 14:547–558

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2007) The ancestral developmental tool kit of land plants. Int J Plant Sci 168:1–35

    Article  CAS  Google Scholar 

  • Golz JF, Keck EJ, Hudson A (2002) Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr Biol 12:515–522

    Article  PubMed  CAS  Google Scholar 

  • Groot EP, Sinha N, Gleissberg S (2005) Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae). Plant Mol Biol 58:317–331

    Article  PubMed  CAS  Google Scholar 

  • Guillet-Claude C, Isabel N, Pelgas B, Bousquet J (2004) The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Mol Biol Evol 21:2232–2245

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Pautot V (2010) Plant development: a TALE story. C R Biol 333:371–381

    Article  PubMed  CAS  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  • Harrison J, Möller M, Langdale J, Cronk Q, Hudson A (2005) The role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell 17:430–443

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137:3153–3165

    Article  PubMed  CAS  Google Scholar 

  • Hirayama Y, Yamada T, Oya Y, Ito M, Kato M, Imaichi R (2007) Expression patterns of class I KNOX and YABBY genes in Ruscus aculeatus (Asparagaceae) with implications for phylloclade homology. Dev Genes Evol 217:363–372

    Article  PubMed  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosciences 8:275–282

    CAS  Google Scholar 

  • Jouannic S, Collin M, Vidal B, Verdeil JL, Tregear JW (2007) A class I KNOX gene from the palm species Elaeis guineensis (Arecaceae) is associated with meristem function and a distinct mode of leaf dissection. New Phytol 174:551–568

    Article  PubMed  CAS  Google Scholar 

  • Kanrar S, Onguka O, Smith HMS (2006) Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta 224:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith HMS (2008) Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant J 54:924–937

    Article  PubMed  CAS  Google Scholar 

  • Karrer AB (1991) Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. PhD dissertation, Universität Zürich

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings Bioinformatics 9:286–298

    Article  CAS  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  • Kimura S, Koenig D, Kang J, Yoong FY, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18:672–677

    Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Magnani E, Hake S (2008) KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell 20:875–887

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Bürglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794

    Article  PubMed  CAS  Google Scholar 

  • Orashakova S, Lange M, Lange S, Wege S, Becker A (2009) The CRABS CLAW ortholog from California poppy (Eschscholzia californica, Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation. Plant J 58:682–693

    Article  PubMed  CAS  Google Scholar 

  • Pabón-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158:1685–1704

    Article  PubMed  Google Scholar 

  • Pautot V, Dockx J, Hamant O, Kronenberger J, Grandjean O, Jublot D, Traas J (2001) KNAT2: evidence for a link between knotted-like genes and carpel development. Plant Cell 13:1719–1734

    PubMed  CAS  Google Scholar 

  • Ragni L, Belles-Boix E, Günl M, Pautot V (2008) Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell 20:888–900

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    Article  PubMed  CAS  Google Scholar 

  • Sano R, Juárez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 7:69–78

    Article  PubMed  CAS  Google Scholar 

  • Scofield S, Dewitte W, Murray JAH (2007) The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J 50:767–781

    Article  PubMed  CAS  Google Scholar 

  • Shani E, Burko Y, Ben-Yaakov L, Berger Y, Amsellem Z, Goldshmidt A, Sharon E, Ori N (2009) Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins. Plant Cell 21:3078–3092

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 15:1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Campbell BC, Hake S (2004) Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol 14:812–817

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Ung N, Lal S, Courtier J (2011) Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot 62:583–593

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kato N, Nakayama H, Nakatani M, Takahata Y (2008) Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). J Plant Physiol 165:1726–1735

    Article  PubMed  CAS  Google Scholar 

  • Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc Natl Acad Sci U S A 99:4730–4735

    Article  PubMed  CAS  Google Scholar 

  • Wege S, Scholz A, Gleissberg S, Becker A (2007) Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot 100:641–649

    Article  PubMed  Google Scholar 

  • Wreath S, Bartholmes C, Hidalgo O, Scholz A, Gleissberg S (2013) Silencing of EcFLO, a FLORICAULA/LEAFY gene of the California poppy (Eschscholzia californica), affects flower specification in a perigynous flower context. Int J Plant Sci 174:139–153

    Article  CAS  Google Scholar 

  • Yellina AL, Orashakova S, Lange S, Erdmann R, Leebens-Mack J, Becker A (2010) Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). EvoDevo 2010:1–13

    Google Scholar 

  • Yu L, Patibanda V, Smith HMS (2009) A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning. Planta 229:693–707

    Article  PubMed  CAS  Google Scholar 

  • Zluvova J, Nicolas M, Berger A, Negrutiu I, Monéger F (2006) Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proc Natl Acad Sci U S A 103:18854–18859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S. Gleissberg received funding from the German Research Foundation (DFG) and a start-up fund from Ohio University. A. Becker received follow-up funding from the German Research Foundation (DFG). We thank N. Sinha (Davis) for providing sequences, Andrea Scholz (Mainz) for cloning of pTRV2-EcSTM1-b, Chi Elsie Zhang (Athens) for database work, Angelika Trambacz, and Werner Vogel (Bremen) for plant care, Friederike Koenig (Bremen) for discussions, Abdinasir Mohamud and Timothy Pritchard (Athens) for help with phenotypic scoring, and two anonymous reviewers for comments.

Author contributions

S. Gleissberg designed the project and led the research with A. Becker. S. Meyer cloned and characterized the genes with B. Townsley. Angelika Stammler contributed to cloning, carried out RT-PCR profiling, and performed the VIGS experiments with phenotypic scoring, data analyses, and data presentation. S. Gleissberg contributed to data analyses and presentation. A. Plant performed the phylogenetic analyses. A. Stammler, S. Gleissberg, and A. Becker wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Gleissberg.

Additional information

Communicated by Sureshkumar Balasubramanian

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 5.81 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stammler, A., Meyer, S.S., Plant, A.R. et al. Duplicated STM-like KNOX I genes act in floral meristem activity in Eschscholzia californica (Papaveraceae). Dev Genes Evol 223, 289–301 (2013). https://doi.org/10.1007/s00427-013-0446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-013-0446-8

Keywords

Navigation