Skip to main content
Log in

Characterization of KNOX genes in Medicago truncatula

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We isolated three class I and three class II KNOX genes in Medicago truncatula. The predicted amino acid sequences suggested a possible orthology to the Arabidopsis homeodomain proteins STM, KNAT1/BP, KNAT3 and KNAT7 that was confirmed by phylogenetic and conserved structural domain analyses. Moreover, the STM-like MtKNOX1 and MtKNOX6 proteins were shown to retain the capability to interact with the Arabidopsis BELL protein partners of STM and KNAT1/BP. Amino acid residues that characterize the different classes of KNOX proteins were identified. Gene expression studies revealed organ-specificity, possible cytokinin-dependent transcriptional activation of two MtKNOXs and expression of one STM-like and a BP/KNAT1-like MtKNOX in roots. Interestingly, mRNA localization studies carried out on class I MtKNOX genes revealed important differences with previously characterised legume KNOXs. M. truncatula transcripts were not down-regulated in leaf primordia and early stages of leaf development, features shared with the more distant compound-leaved species Solanum lycopersicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  • Bauer P, Ratet P, Crespi M, Schultze M, Kondorosi A (1996) Nod factor and cytokinins induce similar cortical cell divisions, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J 10:91–105

    Article  CAS  Google Scholar 

  • Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW (2001) The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 11:2455–2470

    Article  Google Scholar 

  • Benlloch R, d’Erfurth I, Ferrandiz C, Cosson V, Beltran JP, Canas LA, Kondorosi A, Madueno F, Ratet P (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142:972–983

    Article  PubMed  CAS  Google Scholar 

  • Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG (1995) A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 270:31178–31188

    Article  PubMed  CAS  Google Scholar 

  • Bharathan G, Janssen BJ, Kellogg EA, Sinha N (1999) Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Mol Biol Evol 16:553–563

    PubMed  CAS  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860

    Article  PubMed  CAS  Google Scholar 

  • Bhatt AM, Etchells JP, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111

    Article  PubMed  CAS  Google Scholar 

  • Bucciarelli B, Hanan J, Palmquist D, Vance CP (2006) A standardized method for analysis of Medicago truncatula phenotypic development. Plant Physiol 142:207–219

    Article  PubMed  CAS  Google Scholar 

  • Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180

    Article  PubMed  CAS  Google Scholar 

  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401

    Article  PubMed  CAS  Google Scholar 

  • Chen JJ, Janssen BJ, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alternations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–284

    Article  PubMed  CAS  Google Scholar 

  • Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067

    CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6:215–225

    Article  PubMed  CAS  Google Scholar 

  • Dean G, Casson S, Lindsey K (2004) KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Mol Biol 54:71–84

    Article  PubMed  CAS  Google Scholar 

  • De Kochko A, Hamon S (1990) A rapid and efficient method for the isolation of restrictable total DNA from plants of the genus Abelmoschus. Plant Mol Biol Rep 8:3–7

    Article  Google Scholar 

  • Dewitte W, Chiappetta A, Azmi A, Witters E, Strnad M, Rembur J, Noin M, Chriqui D, Van Onckelen H (1999) Dynamics of cytokinins in apical shoot meristems of a day-neutral tobacco during floral transition and flower formation. Plant Physiol 119:111–122

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:101–113

    Article  Google Scholar 

  • Fang Y, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68

    Article  PubMed  CAS  Google Scholar 

  • Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    PubMed  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 7(2):464–474

    Article  CAS  Google Scholar 

  • Frugis G, Giannino D, Mele G, Nicolodi C, Chiappetta A, Bisonti MB, Innocenti AM, Defitte W, Van Onckelen H, Mariotti D (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Furutari M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) Pin-formed1 and Pinoid regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030

    Article  CAS  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  PubMed  CAS  Google Scholar 

  • Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 29:4908–4912

    Article  CAS  Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of KNOX genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Barkoulas M, Tsiantis M (2006) Asymmetric leaves 1 and auxin converges to repress brevipedicellus expression and promote leaf development in Arabidopsis. Development 133:3955–3961

    Article  PubMed  CAS  Google Scholar 

  • Hebsgaard SM, Korning PG, Tolskup N, Engelbrecht J, Rouzé P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24(17):3439–3452

    Article  PubMed  CAS  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7(8):581–587

    Article  PubMed  CAS  Google Scholar 

  • Hofer J, Gourlay C, Michael A, Ellis TH (2001) Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia. Plant Mol Biol 45:387–398

    Article  PubMed  CAS  Google Scholar 

  • Hoth S, Ikeda Y, Morgante M, Wang X, Zuo J, Hanafey MK, Gaasterland T, Tingey SV, Chua NH (2003) Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana. FEBS Lett 20:373–380

    Article  CAS  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Janssen BJ, Lund L, Sinha N (1998a) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Williams A, Chen JJ, Mathern J, Hake S, Sinha N (1998b) Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Mol Biol 36:417–425

    Article  PubMed  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  PubMed  CAS  Google Scholar 

  • Julier B, Huguet T, Chardon F, Ayadi R, Pierre JB, Prosperi JM, Barre P, Huyghe C (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor Appl Genet 114(8):1391–406

    Article  PubMed  Google Scholar 

  • Kanrar S, Onguka O, Smith HM (2006) Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta 224:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S (2006) Integrating hormone signaling and patterning mechanisms in plant development. Curr Opin Plant Biol 9:28–34

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter RA, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  • Koltai H, Dhandaydham M, Opperman CH, Thomas JF, Bird DM (2001) Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Mol Plant Microbe Interact 14:1168–1177

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, van Eden J, Hanhart CJ, Stem P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272

    Google Scholar 

  • Laux T, Mayer KFX, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant 112:421–428

    Article  PubMed  CAS  Google Scholar 

  • Luo JH, Yan J, Weng L, Yang J, Zhao Z, Chen JH, Hu XH, Luo D (2005) Different expression patterns of duplicated PHANTASTICA-like genes in Lotus japonicus suggest their divergent functions during compound leaf development. Cell Res 15:665–677

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:192–196

    Article  Google Scholar 

  • Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev 17:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Moreau D, Salon C, Munier-Jolain N (2006) Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant Cell Environ 29:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Wang Y, Franzen R, Santi L, Salamini F, Rhode W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein–protein associations in the regulation of KNOX gene function. Plant J 27(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parnis A, Cohen O, Gutfinger T, Hareven D, Zamir D, Lifschitz E (1997) The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a knotted gene. Plant Cell 9:2143–2158

    Article  PubMed  CAS  Google Scholar 

  • Pellissier F et al (2006) Lab assembly of a low-cost, robust SYBR green buffer system for quantitative real-time polymerase chain reaction. Anal Biochem 350:310–312

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  PubMed  CAS  Google Scholar 

  • Reiser L, Sanchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol Biol 42:151–166

    Article  PubMed  CAS  Google Scholar 

  • Rupp HM, Frank M, Werner T, Strnad M, Schmulling T (1999) Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J 18:557–563

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 142:54–62

    Article  PubMed  CAS  Google Scholar 

  • Scofield S, Murray JAH (2006) KNOX gene function in plant stem cell niches. Plant Mol Biol 60:929–946

    Article  PubMed  CAS  Google Scholar 

  • Serikawa KA, Martinez-Laborda A, Kim H-S, Zambryski PC (1997) Localization of expression of KNAT3, a class 2 knotted1-like gene. Plant J 11:853–861

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Chang C, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19

    Article  PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Gene Dev 7:787–795

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol 11:118–131

    Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    PubMed  CAS  Google Scholar 

  • Smith HMS, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Campbell BC, Hake S (2004) The competence to respond to floral induction signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol 14:812–817

    Article  PubMed  CAS  Google Scholar 

  • Stieger PA, Reinhardt D, Kuhlemeier C (2002) The auxin influx carrier is essential for correct leaf positioning. Plant J 32:509–517

    Article  PubMed  CAS  Google Scholar 

  • Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56:225–229

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Kusaba S, Kano-Murakami Y, Matsuoka M (1997) Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol 38:917–927

    PubMed  CAS  Google Scholar 

  • Tattersall AD, Turner L, Knox MR, Ambrose MJ, Ellis TH, Hofer JM (2005) The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17:1046–1060

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc Natl Acad Sci USA 99:4730–4735

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161–3172

    PubMed  CAS  Google Scholar 

  • Williams RW (1998) Plant homeobox genes: many functions stem from a common motif. Bioessays 20:280–282

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Fletcher JC (2005) Stem cell regulation in the Arabidopsis shoot apical meristem. Curr Opin Plant Biol 8:582–586

    Article  PubMed  CAS  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowsky R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thanks Josè Pio Beltran, Francisco Madueño and Ana Berbel (Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia—Spain) for kindly providing the inflorescence meristem cDNA library, for helping us to set up in situ hybridization conditions in M. truncatula and for hosting E. D. G. in their lab for a CNR short term fellowship; Giovanni Mele (CNR-IBBA, Rome, Italy) for help with two-hybrid assays; Harley M. S. Smith (Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California) for kindly providing two-hybrid constructs with Arabidopsis genes; the University of L’Aquila, in particular Prof. Laura Spanò and Prof. Anna Poma, for giving E. D. G the opportunity to attend a PhD course and critical suggestions; Renato A. Rodrigues-Pousada for a critical reading of the paper; the Samuel Roberts Noble Foundation, the Texas A&M University and the Texas Medical Center, for providing ESTs. This work was supported by the Ministero dell’Istruzione, dell’Universita` e della Ricerca (MIUR)—Fondo per gli Investimenti della Ricerca di Base (FIRB project no. RBNE018BHE) and by the Consiglio Nazionale delle Ricerche (CNR), Commessa AG.P01.003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Frugis.

Additional information

GenBank accession numbers for MtKNOX1 were EF128056 and AB033478.1 for nucleotide and amino acid sequence, respectively; for MtKNOX2 were EF128057 and AB033479.1; for MtKNOX3 were EF128058 and AB033480.1; for MtKNOX4 were EF128059 and AB033481.1; for MtKNOX5 were EF128060 and AB033482.1; for MtKNOX6 were EF128061 and AB033483.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giacomo, E., Sestili, F., Iannelli, M.A. et al. Characterization of KNOX genes in Medicago truncatula . Plant Mol Biol 67, 135–150 (2008). https://doi.org/10.1007/s11103-008-9307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9307-7

Keywords

Navigation