Skip to main content
Log in

Expression patterns of class I KNOX and YABBY genes in Ruscus aculeatus (Asparagaceae) with implications for phylloclade homology

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

STM (RaSTM) and YAB2 (RaYAB2) homologues were isolated from Ruscus aculeatus (Asparagaceae, monocots), and their expressions were analyzed by real-time polymerase chain reaction (PCR) to assess hypotheses on the evolutionary origin of the phylloclade in the Asparagaceae. In young shoot buds, RaSTM is expressed in the shoot apex, while RaYAB2 is expressed in the scale leaf subtending the shoot bud. This expression pattern is shared by other angiosperms, suggesting that the expression patterns of RaSTM and RaYAB2 are useful as molecular markers to identify the shoot and leaf, respectively. RaSTM and RaYAB2 are expressed concomitantly in phylloclade primordia. These results suggest that the phylloclade is not homologous to either the shoot or leaf, but that it has a double organ identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abouheif E, Akam M, Dickinson WJ, Holland PWH, Meyer A, Patel NH, Raff RA, Roth VL, Wray GA (1997) Homology and developmental genes. Trends Genet 13:432–433

    Article  PubMed  CAS  Google Scholar 

  • APG II (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Arber A (1924) Danaë, Ruscus, and Semele: a morphological study. Ann Bot 38:229–260

    Google Scholar 

  • Arber A (1950) The natural philosophy of plant form. Cambridge University Press, Cambridge

    Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  • Bell AD (1991) Plant form. An illustrated guide to flowering plant morphology. Oxford University Press, Oxford

    Google Scholar 

  • Bharathan G, Janssen BJ, Kellogg EA, Sinha N (1999) Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Mol Biol Evol 16:553–563

    PubMed  CAS  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Chase MW (2004) Monocot relationships: an overview. Am J Bot 91:1645–1655

    CAS  Google Scholar 

  • Cooney-Sovetts C, Sattler R (1986) Phylloclade development in the Asparagaceae: an example of homoeosis. Bot J Linn Soc 94:327–371

    Google Scholar 

  • Croizat-Chaley L (1973) En torno al concepto de Hoya-ensayo de botanica analitica y sintetica. Bibl Acad Cie Fis Mat Nat 12:1–196

    Google Scholar 

  • Cusset G, Tran TTH (1966) Remarques sur l’éperon foliaire des Asparagus. Bull Soc Bot Fr 113:121–151

    Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A,Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Engstrom EM, Izhaki A, Bowman JL (2004) Promoter bashing, microRNAs, and Knox genes. New insights, regulators, and targets-of-regulation in the establishment of lateral organ polarity in Arabidopsis. Plant Physiol 135:685–694

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Fourquin C, Vinauger-Douard M, Fogliani B, Dumas C, Scutt CP (2005) Evidence that CRABS CLAW and TOUSLEDhave conserved their roles in carpel development since the ancestor of the extant angiosperms. Proc Natl Acad Sci USA 102:4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants, 3rd edn. Freeman, New York

    Google Scholar 

  • Harrison JC, Corley SB, Moylan EC, Alexander DL, Scotland RW, Langdale JA (2005) Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM (1977) A developmental study of the phylloclades of Ruscus aculeatus L. Bot J Linn Soc 74:355–365

    Google Scholar 

  • Hofer JMI, Ellis THN (1998) The genetic control of patterning in pea leaves. Trends Plant Sci 3:439–444

    Article  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G (2004) Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol 56:133–143

    Article  PubMed  CAS  Google Scholar 

  • Juarez MT, Twigg RW, Timmermans MC (2004) Specification of adaxial cell fate during maize leaf development. Development 131:4533–4544

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Pham T, Hamidi A, McCormick S, Kuzoff RK, Sinha N (2003) Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development 130:4405–4415

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocracy? Dev Genes Evol 213:149–154

    PubMed  Google Scholar 

  • Reiser L, Sánchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of Knox homeobox genes. Plant Mol Biol 42:151–166

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ, Conran JG, Chase MW (2000) Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation. Bot J Linn Soc 134:73–92

    Article  Google Scholar 

  • Rutishauser R, Grubert M (1999) The architecture of Mourera fluviatilis (Podostemaceae): developmental morphology of inflorescences, flowers and seedlings. Am J Bot 86:907–922

    Article  PubMed  Google Scholar 

  • Rutishauser R, Isler B (2001) Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy Arberian complements classical morphology. Ann Bot 88:1173–1201

    Article  Google Scholar 

  • Sano R, Juarez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 7:69–78

    Article  PubMed  CAS  Google Scholar 

  • Sattler R (1984) Homology- a continuing challenge. Syst Bot 9:382–394

    Article  Google Scholar 

  • Schlittler J (1960) Die Asparageenphyllokladien erweisen sich auch ontogenetisch als Blätter. Bot Fahrb Syst 79:428–446

    Google Scholar 

  • Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in gymnosperm Gnetum parvifolium and its implication for the evolution of reproductive organs in seed plants. Evol Dev 3:180–190

    Article  Google Scholar 

  • Sinha N (1999) Leaf development in angiosperms. Annu Rev Plant Physiol Plant Mol Biol 50:419–446

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2005) Birth, life and death of developmental control genes: new challenges for the homology concept. Theory Biosci 124:199–212

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tomlinson PB, Takaso T, Rattenbury JA (1987) Developmental shoot morphology in Phyllocladus (Podocarpaceae). Bot J Linn Soc 99:223–248

    Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ito M, Kato M (2003) Expression pattern of INNER NO OUTER homologue in Nymphaea (water lily family, Nymphaeaceae). Dev Genes Evol 213:510–513

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ito M, Kato M (2004) YABBY2-homologue expression in lateral organs of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:917–924

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka Y, Nagato Y, Hirano H (2003) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  Google Scholar 

  • Zweigelt F (1913) Was sind die Phyllokladien der Asparageen? Österr Bot Z 63:313–335

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kunihiko Shono and Dr. Hiroyuki Sekimoto for their helpful advice. The Kn4-1 primer was a gift from Dr. Youichi Tanabe. This research is partly supported by grants-in-aid for scientific research from the Japan Society for the Promotion of Science to T.Y., M.K., M. I., and R.I. Yumiko Hirayama and Toshihiro Yamada made equal contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Yamada.

Additional information

Communicated by G. Jürgens

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

KNOX genes and BELL1 used in phylogenetic analysis and their DDBJ/EMBL/GenBank accession numbers. Data published only in the database are indicated by asterisks (DOC 127 kb)

Fig. S2

a (GIF 333 kb) b (GIF 278 kb)

High resolution image file a (TIFF 9.2 mb)

High resolution image file b (TIFF 7.4 mb)

S3

YABBY genes used in phylogenetic analysis and their DDBJ/EMBL/GenBank accession numbers (DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, Y., Yamada, T., Oya, Y. et al. Expression patterns of class I KNOX and YABBY genes in Ruscus aculeatus (Asparagaceae) with implications for phylloclade homology. Dev Genes Evol 217, 363–372 (2007). https://doi.org/10.1007/s00427-007-0149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0149-0

Keywords

Navigation