Skip to main content
Log in

A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100 % of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexopoulos H, Böttger A, Fischer S, Levin A, Wolf A, Fujisawa T, Hayakawa S, Gojobori T, Davies JA, David CN, Bacon JP (2004) Evolution of gap junctions: the missing link? Curr Biol 14:879–880

    Article  Google Scholar 

  • Awasaki T, Lee T (2011) New tools for the analysis of glial cell biology in Drosophila. Glia 59:1377–1386

    Article  PubMed  Google Scholar 

  • Awasaki T, Lai S-L, Ito K, Lee T (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28:13742–13753

    Article  PubMed  CAS  Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363

    Article  PubMed  CAS  Google Scholar 

  • Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [14C] Glucose metabolite trafficking. J Neurosci Res 85:3267–3283

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Bhat MA (2007) Neuron-glial interactions in blood–brain barrier formation. Ann Rev Neurosci 30:235–258

    Article  PubMed  CAS  Google Scholar 

  • Bastiani MJ, Goodman CS (1986) Guidance of neuronal growth cones in the grasshopper embryo. III. Recognition of specific glial pathways. J Neurosci 6:3542–3551

    PubMed  CAS  Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Torian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    PubMed  CAS  Google Scholar 

  • Booth GE, Kinrade EFV, Hidalgo A (2000) Glia maintain follower neuron survival during Drosophila CNS development. Development 127:237–244

    PubMed  CAS  Google Scholar 

  • Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34:247–257

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Williams JL, Herbert Z (2008) Fascicle switching generates a chiasmal neuroarchitecture in the embryonic central body of the grasshopper Schistocerca gregaria. Arthr Struct Dev 37:539–544

    Article  CAS  Google Scholar 

  • Boyan G, Herbert Z, Williams L (2010a) Cell death shapes embryonic lineages of the central complex in the grasshopper Schistocerca gregaria. J Morphol 271:949–959

    PubMed  Google Scholar 

  • Boyan G, Williams L, Legl A, Herbert Z (2010b) Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 341:259–277

    Article  PubMed  Google Scholar 

  • Boyan G, Loser M, Williams L, Liu Y (2011) Astrocyte-like glia associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 221:141–155

    Article  PubMed  Google Scholar 

  • Breidbach O, Dennis R, Marx J, Görlach C, Wiegandt H, Wegerhoff R (1992) Insect glial cells show differential expression of a glycolipid-derived, glucuronic acid-containing epitope throughout neurogenesis: detection during postembryogenesis and regeneration in the central nervous system of Tenebrio molitor L. Neurosci Lett 147:5–8

    Article  PubMed  CAS  Google Scholar 

  • Burt JM, Spray DC (1980) Single-channel events and gating behavior of the cardiac gap junction channel. Proc Natl Acad Sci U S A 85:3431–3434

    Article  Google Scholar 

  • Carlson SD, Saint Marie RL (1990) Structure and function of insect glia. Ann Rev Entomol 35:597–621

    Article  Google Scholar 

  • Carlson SD, Juang JL, Hilgers SL, Garment MB (2000) Blood barriers of the insect. Ann Rev Entomol 45:151–174

    Article  CAS  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PRH, Zhang X, Aufschnaiter R, Eder M-E, Gorny A-K, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Böttger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TCG, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver PF (1993) Origins, migration and differentiation of glial cells in the insect enteric nervous system from a discrete set of glial precursors. Development 117:59–74

    Google Scholar 

  • Doherty J, Logan MA, Tasdemir OE, Freeman MR (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29:4768–4781

    Article  PubMed  CAS  Google Scholar 

  • Ducret E, Alexopoulos H, Le Feuvre Y, Davies JA, Meyrand P, Bacon JP, Fénelon VS (2006) Innexins in the lobster stomatogastric nervous system: cloning, phylogenetic analysis, developmental changes and expression within adult identified dye and electrically coupled neurons. Eur J Neurosci 24:3119–3133

    Article  PubMed  CAS  Google Scholar 

  • Dykes IM, Freeman FM, Bacon JP, Davies JA (2004) Molecular basis of gap-junctional communication in the CNS of the leech Hirudo medicinalis. J Neurosci 24:886–94

    Google Scholar 

  • Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 90:471–497

    Article  PubMed  CAS  Google Scholar 

  • el Jundi B, Heinze S, Lenschow C, Kurylas A, Rohlfing T, Homberg U (2010) The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Front Syst Neurosci 3:21

    PubMed  Google Scholar 

  • Fielden A (1960) Transmission through the last abdominal ganglion of the dragonfly nymph Anax imperator. J Exp Biol 37:832–844

    Google Scholar 

  • Fredieu JR, Mahowald AP (1989) Glial interactions with neurons during Drosophila embryogenesis. Development 106:739–748

    PubMed  CAS  Google Scholar 

  • Goodman CS, Spitzer NC (1980) Embryonic development of neurotransmitter receptors in grasshoppers. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 195–207

    Google Scholar 

  • Goodman CS, Spitzer NC (1981) The development of electrical properties of identified neurons in grasshopper embryos. J Physiol (Lond) 313:385–413

    CAS  Google Scholar 

  • Goodman CS, O’Shea M, Caman R, Spitzer NC (1979) Embryonic development of identified neurons: temporal pattern of morphological and biochemical differentiation. Science 204:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Haase A, Stern M, Wächtler K, Bicker G (2001) A tissue-specific marker of Ecdysozoa. Dev Genes Evol 211:428–433

    Article  PubMed  CAS  Google Scholar 

  • Hähnlein I, Bicker G (1996) Morphology of neuroglia in the antennal lobes and mushroom bodies of the brain of the honeybee. J Comp Neurol 367:235–245

    Article  PubMed  Google Scholar 

  • Hähnlein I, Bicker G (1997) Glial patterning during postemebryonic development of central neuropiles in the brain of the honeybee. Dev Genes Evol 207:29–41

    Article  PubMed  Google Scholar 

  • Halter DA, Urban J, Rickert C, Ner SS, Ito K, Travers AA, Technau GM (1995) The homeobox gene repo is required for the differentiation and maintenance of glial function in the embryonic nervous system of Drosophila melanogaster. Development 121:317–322

    PubMed  CAS  Google Scholar 

  • Hartenstein V, Nassif C, Lekven A (1998) Embryonic development of the Drosophila brain. II. Pattern of glia cells. J Comp Neurol 402:32–47

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein V, Spindler S, Pereanu W, Fung S (2008) The development of the Drosophila larval brain. Adv Exp Med Biol 628:1–31

    Article  PubMed  Google Scholar 

  • Hatton GI (2002) Glial-neuronal interactions in the mammalian brain. Adv Physiol Educ 26:225–237

    PubMed  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial e-vector orientations in the brain of an insect. Science 315:995–997

    Article  PubMed  CAS  Google Scholar 

  • Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478

    Article  PubMed  Google Scholar 

  • Hidalgo A (2003) Neuron-glia interactions during axon guidance in Drosophila. Biochem Soc Trans 31:50–55

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A, Booth GE (2000) Glia dictate pioneer axon trajectories in the Drosophila embryonic CNS. Development 127:393–402

    PubMed  CAS  Google Scholar 

  • Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Ernst LA, Nagy JI (1995) Utility of intensely fluorescent cyanine dyes (Cy3) for assay of gap junctional communication by dye-transfer. Neurosci Lett 184:71–74

    Article  PubMed  CAS  Google Scholar 

  • Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G (1986) Glial cells of an insect ganglion. J Comp Neurol 246:85–103

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Urban J, Technau GM (1994) Distribution, classification and development of Drosophila glial cells during late embryogenesis. Roux’s Arch Dev Biol 204:284–307

    Article  Google Scholar 

  • Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    PubMed  CAS  Google Scholar 

  • Izergina N, Balmer J, Bello B, Reichert H (2009) Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev 4:44

    Article  PubMed  Google Scholar 

  • Jacobs JR, Goodman CS (1989) Embryonic development of axon pathways in the Drosophila CNS. I. A glial scaffold appears before the first growth cones. J Neurosci 9:2402–2411

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1982) Antibodies to horseradish-peroxidase as specific neuronal markers in Drosophila and grasshopper embryos. Proc Natl Acad Sci U S A 79:2700–2704

    Article  PubMed  CAS  Google Scholar 

  • Jones BW (2001) Glial cell development in the Drosophila embryo. BioEssays 23:877–887

    Article  PubMed  CAS  Google Scholar 

  • Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuro-Psychopharm Biol Psychiat 33:181–198

    Article  CAS  Google Scholar 

  • Klämbt C (2009) Modes and regulation of glial migration in vertebrates and invertebrates. Nat Rev Neurosci 10:769–779

    Article  PubMed  Google Scholar 

  • Koussa MA, Tolbert LP, Oland LA (2010) Development of a glial network in the olfactory nerve: role of calcium and neuronal activity. Neuron Glia Biol 6:245–261

    Article  PubMed  Google Scholar 

  • Lanosa XA, Reisin HD, Santacroce I, Colombo JA (2008) Astroglial dye-coupling: an in vitro analysis of regional and interspecies differences in rodents and primates. Brain Res 1240:82–86

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf M, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    Article  PubMed  CAS  Google Scholar 

  • Ludwig P, Williams JLD, Lodde E, Reichert H, Boyan GS (1999) Neurogenesis in the median domain of the embryonic brain of the grasshopper Schistocerca gregaria. J Comp Neurol 414:379–390

    Article  PubMed  CAS  Google Scholar 

  • Naimski P, Bierzyimageski A, Fikus M (1980) Quantitative fluorescent analysis of different conformational forms of DNA bound to the dye 4´, 6-diamidine-2-phenylindole, and separated by gel electrophoresis. Anal Biochem 106:471–475

    Google Scholar 

  • Neuser K, Triphan T, Mronz M, Poeck B, Strauss R (2008) Analysis of a spatial orientation memory in Drosophila. Nature 453:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • Newman EA (2001) Propagation of intercellular calium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223

    PubMed  CAS  Google Scholar 

  • Noordermeer JN, Kopczynski CC, Fetter RD, Bland KS, Chen W-Y, Goodman CS (1998) Wrapper, a novel member of the Ig superfamily, is expressed by midline glia and is required for them to ensheath commissural axons in Drosophila. Neuron 21:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Nordlander RH, Edwards JS (1969) Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus, L. I Cellular events during brain morphogenesis. Wilh Roux Árchiv 162:197–217

    Article  Google Scholar 

  • Oland LA, Tolbert LP (1987) Glial patterns during early development of antennal lobes of Manduca sexta: a comparison between normal lobes and lobes deprived of antennal axons. J Comp Neurol 255:196–207

    Article  PubMed  CAS  Google Scholar 

  • Oland LA, Tolbert LP (1989) Patterns of glial proliferation during formation of olfactory glomeruli in an insect. Glia 2:10–24

    Article  PubMed  CAS  Google Scholar 

  • Oland LA, Marrero HG, Burger I (1999) Glial cells in the developing and adult olfactory lobe of the moth Manduca sexta. Cell Tissue Res 297:527–545

    Article  PubMed  CAS  Google Scholar 

  • Page DT (2004) A mode of arthropod brain evolution suggested by Drosophila commissure development. Evol Dev 6:25–31

    Article  PubMed  Google Scholar 

  • Parys B, Cote A, Gallo V, De Koninck P, Sik A (2010) Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167:1032–1043

    Article  PubMed  CAS  Google Scholar 

  • Pereanu W, Hartenstein V (2006) Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. J Neurosci 26:5534–5553

    Article  PubMed  CAS  Google Scholar 

  • Pereanu W, Shy D, Hartenstein V (2005) Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 283:191–203

    Article  PubMed  CAS  Google Scholar 

  • Pereanu W, Younossi-Hartenstein A, Lovick J, Spindler S, Hartenstein V (2011) A lineage-based analysis of the development of the central complex of the Drosophila brain. J Comp Neurol 519:661–689

    Article  PubMed  Google Scholar 

  • Phelan P, Goulding LA, Tam JLY, Dawber RJ, Davies JA, Bacon JP (2008) Molecular mechanism of rectification at an identified electrical synapse in the Drosophila giant fibre system. Curr Biol 18:1955–1960

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan R, Gong Q, Gaul U (1999) Migration and function of glia in the developing Drosophila eye. Development 126:3285–3292

    PubMed  CAS  Google Scholar 

  • Rela L, Bordey A, Greer CA (2010) Olfactory ensheathing cell membrane properties are shaped by connectivity. Glia 58:665–678

    PubMed  Google Scholar 

  • Renn SCN, Armstrong JD, Yang M, Wang Z, An X, Kaiser K, Taghert PH (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41:189–207

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J, Deitmar JW (1996) Photoinactivation of the giant neuropil glial cells in the leech Hirudo medicinalis: effects on neuronal activity and synaptic transmission. J Neurophysiol 76:2861–2871

    PubMed  CAS  Google Scholar 

  • Schofield PK, Swales LS, Trehern JE (1984) Potentials associated with the blood–brain barrier of an insect: recordings from identified neuroglia. J Exp Biol 109:307–318

    Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:409–426

    Google Scholar 

  • Sepp KJ, Auld VJ (2003) Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development. J Neurosci 23:8221–8230

    PubMed  CAS  Google Scholar 

  • Silies S, Klämbt C (2011) Adhesion and signaling between neurons and glia cells in Drosophila. Curr Opin Neurobiol 21:11–16

    Article  PubMed  CAS  Google Scholar 

  • Silies M, Yuva Y, Engelen D, Aho A, Stork T, Klämbt C (2007) Glial cell migration in the eye disc. J Neurosci 27:13130–13139

    Article  PubMed  CAS  Google Scholar 

  • Snow PM, Patel NH, Harrelson AL, Goodman CS (1987) Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embryos. J Neurosci 7:4137–4144

    PubMed  CAS  Google Scholar 

  • Stevenson PA, Kutsch W (1986) Basic circuitry of an adult-specific motor program completed with embryogenesis. Naturwissenschaften 73:741–743

    Article  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc B 276:1929–1937

    Article  PubMed  Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  PubMed  CAS  Google Scholar 

  • Swales LS, Lane NJ (1985) Embyronic development of glial cells and their junctions in the locust central nervous system. J Neurosci 5:117–127

    PubMed  CAS  Google Scholar 

  • Takahashi DK, Vargas JR, Wilcox KS (2010) Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 40:573–585

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Yamaguchi K, Tatsukawa T, Theis M, Willecke K, Itohara S (2008) Connexin43 and bergmann glial gap junctions in cerebellar function. Front Neurosci 2:225–233

    Article  PubMed  CAS  Google Scholar 

  • Theiss C, Meller K (2002) Aluminum impairs gap junctional intercellular communication between astroglial cells in vitro. Cell Tissue Res 310:143–154

    Article  PubMed  CAS  Google Scholar 

  • Tiemeyer M, Goodman CS (1996) Gliolectin is a novel carbohydrate binding protein expressed by a subset of glia in the embryonic Drosophila nervous system. Development 122:925–936

    PubMed  CAS  Google Scholar 

  • van der Hel WS, Notenboom RGE, Bos IWM, van Rijen PC, van Veelen CWM, de Graan PNE (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    Article  PubMed  Google Scholar 

  • Vanhems E (1985) An in vitro autoradiographic study of gliogenesis in the embryonic locust brain. Dev Brain Res 23:269–275

    Article  Google Scholar 

  • Vasenkova I, Luginbuhl D, Chiba A (2006) Gliopodia extend the range of direct glia-neuron communication during the CNS development in Drosophila. Mol Cell Neurosci 31:123–130

    Article  PubMed  CAS  Google Scholar 

  • Viktorin G, Riebli N, Popkova A, Giangrande A, Reichert H (2011) Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 356:553–565

    Article  PubMed  CAS  Google Scholar 

  • Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973

    Article  PubMed  CAS  Google Scholar 

  • Wedler FC, Horn BR (1976) Catalytic mechanisms of glutamine synthetase enzymes. J Biol Chem 251:7530–7538

    PubMed  CAS  Google Scholar 

  • Weingart R, Bukauskas FF (1998) Long-chanin n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanisms of gap junction channels. Eur J Physiol 435:310–319

    Article  CAS  Google Scholar 

  • Wilcox MJ (1994) Structure and function of gap junctions in the photoreceptor axon terminals of the fly. Adv Chem 235:225–243

    Article  CAS  Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool Lond 176:67–86

    Article  Google Scholar 

  • Young JM, Armstrong JD (2010a) Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J Comp Neurol 518:1500–1524

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Armstrong JD (2010b) Building the central complex in Drosophila: the generation and development of distinct subsets. J Comp Neurol 518:1525–1541

    Article  PubMed  CAS  Google Scholar 

  • Zahs KR, Newman E (1997) Asymmetric gap junctional coupling between glial cells in the rat retina. Glia 20:10–22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Les Williams for assistance with the silver intensification procedures, Karin Fischer for establishing protocols for producing the brain slices, and Ms. Stefanie Götz for criticisms of the manuscript. Grant sponsor: Deutsche Forschungsgemeinschaft (BO 1434/3-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Boyan.

Additional information

Communicated by S. Roth

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 10

Dye injection into extracellular space is not taken up by neighboring somata or processes. a Photomicrograph (DIC) of a brain slice (100 % of embryogenesis) shows tip of glass microelectrode filled with dye (Alexa® Fluor 568) situated in extracellular space (outlined dashed white) associated with a small cluster of glia cells (white stars) of the protocerebrum (PC). Several gliopodia are visible (white arrowheads). b. Fluorescence micrograph of the same preparation as a but following 5 min of dye injection into the extracellular space and with simultaneous background illumination (for details, see Fig. 4). Focal depth is slightly different to that in a in order to visualize neighboring cells (open white dots). Most of the dye has dissipated into extracellular space; some residual dye (open/white arrowhead) is still visible at the electrode tip. No dye has been taken up either by the cluster of glia cells (white stars) or their neighbors. Scale bar in b represents 22 μm throughout (JPEG 36 kb)

High resolution image (TIFF 4199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyan, G.S., Liu, Y. & Loser, M. A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria . Dev Genes Evol 222, 125–138 (2012). https://doi.org/10.1007/s00427-012-0394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0394-8

Keywords

Navigation