Skip to main content

Dye Coupling and Immunostaining of Astrocyte-Like Glia Following Intracellular Injection of Fluorochromes in Brain Slices of the Grasshopper, Schistocerca gregaria

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

Injection of fluorochromes such as Alexa Fluor® 568 into single cells in brain slices reveals a network of dye-coupled cells to be associated with the central complex. Subsequent immunolabeling shows these cells to be repo positive/glutamine synthetase positive/horseradish peroxidase negative, thus identifying them as astrocyte-like glia. Dye coupling fails in the presence of n-heptanol indicating that dye spreads from cell to cell via gap junctions. A cellular network of dye-coupled, astrocyte-like, glia surrounds and infiltrates developing central complex neuropils. Intracellular dye injection techniques complement current molecular approaches in analyzing the functional properties of such networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones BW, Fetter RD, Tear G, Goodman CS (1995) Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82:1013–1023

    Article  PubMed  CAS  Google Scholar 

  2. Jones BW (2001) Glial cell development in the Drosophila embryo. Bioessays 23:877–887

    Article  PubMed  CAS  Google Scholar 

  3. Hidalgo A (2003) Neuron-glia interactions during axon guidance in Drosophila. Biochem Soc Trans 31:50–55

    Article  PubMed  CAS  Google Scholar 

  4. Klämbt C (2009) Modes and regulation of glial migration in vertebrates and invertebrates. Nat Rev Neurosci 10:769–779

    Article  PubMed  Google Scholar 

  5. Vanhems E (1995) Insect glial cells and their relationships with neurons. In: Vernadakis A, Roots B (eds) Neuron-Glia interrelations during phylogeny: II. Plasticity and regeneration. Humana, Totowa, NJ, pp 49–77

    Chapter  Google Scholar 

  6. Awasaki T, Lai S-L, Ito K, Lee T (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28:13742–13753

    Article  PubMed  CAS  Google Scholar 

  7. Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 90:471–497

    Article  PubMed  CAS  Google Scholar 

  8. Awasaki T, Lee T (2011) New tools for the analysis of glial cell biology in Drosophila. Glia 59:1377–1386

    Article  PubMed  Google Scholar 

  9. Boyan G, Loser M, Williams L, Liu Y (2011) Astrocyte-like glia associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 221:141–155

    Article  PubMed  Google Scholar 

  10. Schofield PK, Swales LS, Trehern JE (1984) Potentials associated with the blood-brain barrier of an insect: recordings from identified neuroglia. J Exp Biol 109:307–318

    Google Scholar 

  11. Swales LS, Lane NJ (1985) Embyronic development of glial cells and their junctions in the locust central nervous system. J Neurosci 5:117–127

    PubMed  CAS  Google Scholar 

  12. Schmidt J, Deitmar JW (1996) Photoin-activation of the giant neuropil glial cells in the leech Hirudo medicinalis: effects on neuronal activity and synaptic transmission. J Neuro-physiol 76:2861–2871

    CAS  Google Scholar 

  13. Alexopoulos H, Böttger A, Fischer S et al (2004) Evolution of gap junctions: the missing link? Curr Biol 14:879–880

    Article  Google Scholar 

  14. Phelan P, Goulding LA, Tam JLY et al (2008) Molecular mechanism of rectification at an identified electrical synapse in the Drosophila giant fibre system. Curr Biol 18:1955–1960

    Article  PubMed  CAS  Google Scholar 

  15. Koussa MA, Tolbert LP, Oland LA (2011) Development of a glial network in the olfactory nerve: role of calcium and neuronal activity. Neuron Glia Biol 6(4):245–261

    Google Scholar 

  16. Zahs KR, Newman E (1997) Asymmetric gap junctional coupling between glial cells in the rat retina. Glia 20:10–22

    Article  PubMed  CAS  Google Scholar 

  17. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223

    PubMed  CAS  Google Scholar 

  18. Theiss C, Meller K (2002) Aluminum impairs gap junctional intercellular communication between astroglial cells in vitro. Cell Tissue Res 310:143–154

    Article  PubMed  CAS  Google Scholar 

  19. Houades V, Koulakoff A, Ezan P et al (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka M, Yamaguchi K, Tatsukawa T et al (2008) Connexin43 and bergmann glial gap junctions in cerebellar function. Front Neurosci 2:225–233

    Article  PubMed  CAS  Google Scholar 

  21. Parys B, Cote A, Gallo V et al (2010) Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167:1032–1043

    Article  PubMed  CAS  Google Scholar 

  22. Rela L, Bordey A, Greer CA (2010) Olfactory ensheathing cell membrane properties are shaped by connectivity. Glia 58:665–678

    PubMed  Google Scholar 

  23. Hossain MZ, Ernst LA, Nagy JI (1995) Utility of intensely fluorescent cyanine dyes (Cy3) for assay of gap junctional communication by dye-transfer. Neurosci Lett 184:71–74

    Article  PubMed  CAS  Google Scholar 

  24. Ball KK, Gandhi GK, Thrash J et al (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [14C]Glucose metabolite trafficking. J Neurosci Res 85:3267–3283

    Article  PubMed  CAS  Google Scholar 

  25. Lanosa XA, Reisin HD, Santacroce I et al (2008) Astroglial dye-coupling: an in vitro analysis of regional and interspecies differences in rodents and primates. Brain Res 1240:82–86

    Article  PubMed  CAS  Google Scholar 

  26. Boyan GS, Liu Y, Loser M (2012) A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 222:125–138

    Article  PubMed  CAS  Google Scholar 

  27. Burt JM, Spray DC (1980) Single-channel events and gating behavior of the cardiac gap junction channel. Proc Natl Acad Sci U S A 85:3431–3434

    Article  Google Scholar 

  28. Weingart R, Bukauskas FF (1998) Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanisms of gap junction channels. Eur J Physiol 435:310–319

    Article  CAS  Google Scholar 

  29. Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 33:181–198

    Article  PubMed  CAS  Google Scholar 

  30. Boyan GS, Niederleitner B (2011) Patterns of dye coupling involving serotonergic neurons provide insights into the cellular organization of a central complex lineage of the embryonic grasshopper Schistocerca gregaria. Dev Genes Evol 220:297–313

    Article  PubMed  CAS  Google Scholar 

  31. Chapman JA, Kirkness EF, Simakov O et al (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  PubMed  CAS  Google Scholar 

  32. Wedler FC, Horn BR (1976) Catalytic mechanisms of glutamine synthetase enzymes. J Biol Chem 251:7530–7538

    PubMed  CAS  Google Scholar 

  33. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  PubMed  CAS  Google Scholar 

  34. van der Hel WS, Notenboom RGE, Bos IWM et al (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    Article  PubMed  Google Scholar 

  35. Ward M, Jobling A, Puthussery T et al (2004) Localization and expression of the glutamate transporter, excitatory amino acid transporter 4, within astrocytes of the rat retina. Cell Tissue Res 315:305–310

    Article  PubMed  CAS  Google Scholar 

  36. Snow PM, Patel NH, Harrelson AL et al (1987) Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embryos. J Neurosci 7:4137–4144

    PubMed  CAS  Google Scholar 

  37. Jan LY, Jan YN (1982) Antibodies to horseradish-peroxidase as specific neuronal markers in Drosophila and grasshopper embryos. Proc Natl Acad Sci U S A 79:2700–2704

    Article  PubMed  CAS  Google Scholar 

  38. Haase A, Stern M, Wächtler K et al (2001) A tissue-specific marker of Ecdysozoa. Dev Genes Evol 211:428–433

    Article  PubMed  CAS  Google Scholar 

  39. Halter DA, Urban J, Rickert C et al (1995) The homeobox gene repo is required for the differentiation and maintenance of glial function in the embryonic nervous system of Drosophila melanogaster. Development 121:317–322

    PubMed  CAS  Google Scholar 

  40. Bentley D, Keshishian H, Shankland M et al (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    PubMed  CAS  Google Scholar 

  41. Weber PA, Chang HC, Spaeth KE et al (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG grant BO 1434/3–5 and the Graduate School of Systemic Neuroscience, University of Munich. We thank S. Götz for assistance with dye injection and immunolabeling of glia (Fig. 2d–f).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boyan, G., Liu, Y. (2014). Dye Coupling and Immunostaining of Astrocyte-Like Glia Following Intracellular Injection of Fluorochromes in Brain Slices of the Grasshopper, Schistocerca gregaria . In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics