Skip to main content
Log in

Stimulus–response correspondence in go–nogo and choice tasks: Are reactions altered by the presence of an irrelevant salient object?

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In 2-choice tasks, responses are faster when stimulus location corresponds to response location, even when stimulus location is irrelevant. Dolk et al. (J Exp Psychol Hum Percept Perform 39:1248–1260, 2013a) found this stimulus–response correspondence effect with a single response location in a go–nogo task when an irrelevant Japanese waving cat was present. They argued that salient objects trigger spatial coding of the response relative to that object. We examined this claim using both behavioral and lateralized readiness potential (LRP) measures. In Experiment 1 participants determined the pitch of a left- or right-positioned tone, whereas in Experiment 2 they determined the color of a dot within a centrally located hand pointing left, right, or straight ahead. In both experiments, participants performed a go–nogo task with the right-index finger and a 2-choice task with both index fingers, with a left-positioned Japanese waving cat present or absent. For the go–nogo task, the cat induced a correspondence effect on response times (RT) to the tones (Experiment 1) but not the visual stimuli (Experiment 2). For the 2-choice task, a correspondence effect was evident in all conditions in both experiments. Cat’s presence/absence did not significantly modulate the effect for right and left responses, although there was a trend toward increased RT and LRP for right responses in Experiment 1. The results imply that a salient, irrelevant object could provide a reference frame for response coding when attention is available to process it, as is likely in an auditory task (Experiment 1) but not a visual task (Experiment 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. One reviewer raised a concern regarding the twice more “response” trials for the 2-choice task than the go–nogo trials in the data analyses. To address this concern, we conducted another analysis on RT for each experiment comparing the first half of the 2-choice task trials to the go–nogo task trials. Results were similar to the main analyses including all of the 2-choice task trials in both Experiments 1 and 2. In both experiments, the critical 3-way interaction between correspondence, task type, and object condition was not significant, Fs < 1.0. Furthermore, the correspondence effect in the 2-choice task remained unaffected by the cat condition, ts(23) ≤ 1.43, ps ≥ 0.17.

  2. LRPs strongly depend on RTs and are determined mainly on the fast response trials (e.g., Meyer, Osman, Irwin, & Yantis, 1988). Because of the variability of RT between the auditory task in Experiment 1 and the visual task in Experiment 2, different time windows could have been used to assess LRPs. Nevertheless, we focused on the time window 100–200 ms in both experiments where the LRPs for corresponding and noncorresponding trials started to diverge. The complete summaries of LRP analyses for the consecutive 100-ms time windows from 0–400 ms after stimulus onset are reported in Appendix 2 (Experiment 1) and Appendix 4 (Experiment 2).

References

  • Ansorge, U., & Wühr, P. (2004). A response-discrimination account of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 30, 365–377.

    PubMed  Google Scholar 

  • Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112, 2224–2232.

    Article  PubMed  Google Scholar 

  • De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750.

    PubMed  Google Scholar 

  • De Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. M. (1988). The use of partial information in response processing: a psychophysiological investigation. Journal of Experimental Psychology: Human Perception and Performance, 14, 682–692.

    PubMed  Google Scholar 

  • Dimoska, A., Johnstone, S. J., & Barry, R. J. (2006). The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection? Brain and Cognition, 62, 98–112.

    Article  PubMed  Google Scholar 

  • Dittrich, K., Dolk, T., Rothe-Wulf, A., Klauer, K. C., & Prinz, W. (2013). Keys and seats: spatial response coding underlying the joint spatial compatibility effect. Attention, Perception, & Psychophysics, 75, 1725–1736.

    Article  Google Scholar 

  • Dittrich, K., Kellen, D., & Stahl, C. (2014). Analyzing distributional properties of interference effects across modalities: changes and challenges. Psychological Research, 78, 387–399.

    Article  PubMed  Google Scholar 

  • Dittrich, K., Rothe, A., & Klauer, K. C. (2012). Increased spatial salience in the social Simon task: a response-coding account of spatial compatibility effects. Attention, Perception, & Psychophysics, 74, 911–929.

    Article  Google Scholar 

  • Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., Prinz, W., & Liepelt, R. (2011). How “social” is the social Simon effect? Frontier in Psychology, 2, 84.

    Google Scholar 

  • Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., Prinz, W., & Liepelt, R. (2014). The joint Simon effect: a review and theoretical integration. Frontier in Psychology, 5, 974.

    Google Scholar 

  • Dolk, T., Hommel, B., Prinz, W., & Liepelt, R. (2013a). The (not so) social Simon effect: a referential coding account. Journal of Experimental Psychology: Human Perception and Performance, 39, 1248–1260.

    PubMed  Google Scholar 

  • Dolk, T., Liepelt, R., Prinz, W., & Fiehler, K. (2013b). Visual experience determines the use of external reference frames in joint action control. PLoS ONE, 8(3), e59008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431.

    Article  PubMed  Google Scholar 

  • Donkers, F. C. L., & Van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56, 165–176.

    Article  PubMed  Google Scholar 

  • Gomez, P., Ratcliff, R., & Perea, M. (2007). A model of the go/no-go task. Journal of Experimental Psychology: General, 136, 389–413.

    Article  Google Scholar 

  • Guagnano, D., Rusconia, E., & Umiltá, C. A. (2010). Sharing a task or sharing space? On the effect of the confederate in action coding in a detection task. Cognition, 114, 348–355.

    Article  PubMed  Google Scholar 

  • Holländer, A., Jung, C., & Prinz, W. (2011). Covert motor activity on NoGo trials in a task sharing paradigm: evidence from the lateralized readiness potential. Experimental Brain Research, 211, 345–356.

    Article  PubMed  Google Scholar 

  • Hommel, B. (1993). Inverting the Simon effect by intention. Psychological Research, 55, 270–279.

    Article  Google Scholar 

  • Hommel, B. (1996). S-R compatibility effects without response uncertainty. Quarterly Journal of Experimental Psychology, 49A, 546–571.

    Article  Google Scholar 

  • Hommel, B. (2004). Event files: feature binding in and across perception and action. Trends in Cognitive Science, 8, 494–500.

    Article  Google Scholar 

  • Hommel, B. (2009). Action control according to TEC (Theory of event coding). Psychological Research, 73, 512–526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hommel, B., Colzato, L. S., & van den Wildenberg, W. P. M. (2009). How social are task representations. Psychological Science, 20, 794–798.

    Article  PubMed  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878.

    Article  PubMed  Google Scholar 

  • Knoblich, G., & Sebanz, N. (2006). The social nature of perception and action. Current Directions in Psychological Science, 15, 99–104.

    Article  Google Scholar 

  • Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralised readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19–27.

    Article  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97, 253–270.

    Article  PubMed  Google Scholar 

  • Lamberts, K., Tavernier, G., & D’Ydewalle, G. (1992). Effects of multiple reference points in spatial stimulus–response compatibility. Acta Psychologica, 79, 115–130.

    Article  PubMed  Google Scholar 

  • Lien, M.-C., & Proctor, R. W. (2002). Stimulus–response compatibility and psychological refractory period effects: implications for response selection. Psychonomic Bulletin & Review, 9, 212–238.

    Article  Google Scholar 

  • Lien, M.-C., Ruthruff, E., Hsieh, S.-L., & Yu, Y.-T. (2007). Parallel central processing between tasks: evidence from lateralized readiness potential. Psychonomic Bulletin & Review, 14, 133–141.

    Article  Google Scholar 

  • Liepelt, R. (2014). Interacting hands: the role of attention for the joint Simon effect. Frontiers in Psychology, 5, 1462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, C.-H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207.

    Article  Google Scholar 

  • Lu, C.-H., & Proctor, R. W. (2001). Influence of irrelevant information on human performance: effects of S-R association strength and relative timing. Quarterly Journal of Experimental Psychology, 54A, 95–136.

    Article  Google Scholar 

  • Masaki, H., Wild-Wall, N., Sanglas, J., & Sommer, W. (2004). The functional locus of the lateralized readiness potential. Psychophysiology, 41, 220–230.

    Article  PubMed  Google Scholar 

  • Memelink, J., & Hommel, B. (2013). Intentional weighting: a basic principle in cognitive control. Psychological Research, 77, 249–259.

    Article  PubMed  Google Scholar 

  • Meyer, O. W., Osman, A. M., Irwin, O. E., & Yantis, S. (1988). Modern mental chronometry. Biological Psychology, 26, 3–67.

    Article  PubMed  Google Scholar 

  • Miller, J., Coles, M. G. H., & Chakraborty, S. (1996). Dissociation between behavioral and psychophysiological measures of response preparation. Acta Psychologica, 94, 189–208.

    Article  PubMed  Google Scholar 

  • Miller, J., & Hackley, S. A. (1992). Electrophysiological evidence for temporal overlap among contingent mental processes. Journal of Experimental Psychology: General, 121, 195–209.

    Article  Google Scholar 

  • Neumann, O., van der Heijden, A. H. C., & Allport, D. A. (1986). Visual selective attention: introductory remarks. Psychological Research, 48, 185–188.

    Article  PubMed  Google Scholar 

  • Nicoletti, R., & Umiltá, C. (1989a). Splitting visual space with attention. Journal of Experimental Psychology: Human Perception and Performance, 15, 164–169.

    PubMed  Google Scholar 

  • Nicoletti, R., & Umiltá, C. (1989b). Attention shifts produce spatial stimulus codes. Psychological Research, 56, 144–150.

    Article  Google Scholar 

  • Praamstra, P. (2007). Do’s and don’ts with lateralized event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 33, 497–502.

    PubMed  Google Scholar 

  • Proctor, R. W., & Shao, C. (2010). Does the contribution of stimulus-hand correspondence to the auditory Simon effect increase with practice? Experimental Brain Research, 204, 131–137.

    Article  PubMed  Google Scholar 

  • Proctor, R. W., & Vu, K.-P. L. (2006). Stimulus–response compatibility principles: Data, theory, and application. Boca Raton: CRC Press.

    Google Scholar 

  • Reeve, T. G., & Proctor, R. W. (1988). Determinants of two-choice reaction-time patterns for same-hand and different-hand finger pairings. Journal of Motor Behavior, 20, 317–340.

    Article  PubMed  Google Scholar 

  • Roberts, L. E., Rau, H., Lutzenberger, W., & Birbaumer, N. (1994). Mapping P300 waves onto inhibition: Go/No-Go discrimination. Electroencephalography and Clinical Neurophysiology, 92, 44–55.

    Article  PubMed  Google Scholar 

  • Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: what, when, and where. Topics in Cognitive Science, 1, 353–367.

    Article  PubMed  Google Scholar 

  • Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: just like one’s own? Cognition, 88, B11–B21.

    Article  PubMed  Google Scholar 

  • Sebanz, N., Knoblich, G., & Prinz, W. (2005). How to share a task: co-representing stimulus–response mapping. Journal of Experimental Psychology: Human Perception and Performance, 31, 1234–1246.

    PubMed  Google Scholar 

  • Sebanz, N., Knoblich, G., Prinz, W., & Wascher, E. (2006). Twin peaks: an ERP study of action planning and control in coacting individuals. Journal of Cognitive Neuroscience, 18, 859–870.

    Article  PubMed  Google Scholar 

  • Shiu, L.-P., & Kornblum, S. (1999). Stimulus–response compatibility effects in go–no-go tasks: a dimensional overlap account. Perception and Psychophysics, 61, 1613–1623.

    Article  PubMed  Google Scholar 

  • Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 31–86). Amsterdam: North-Holland.

    Google Scholar 

  • Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: the effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51, 300–304.

    Article  PubMed  Google Scholar 

  • Smith, J. L., Johnstone, S. J., & Barry, R. J. (2007). Response priming in the Go/NoGo task: the N2 reflects neither inhibition nor conflict. Clinical Neurophysiology, 118, 343–355.

    Article  PubMed  Google Scholar 

  • Smith, J. L., Smith, E. A., Provost, A. L., & Healthcote, A. (2010). Sequence effects support the conflict theory of N2 and P3 in the Go/Nogo task. International Journal of Psychophysiology, 75, 217–218.

    Article  PubMed  Google Scholar 

  • Stoffer, T. H. (1991). Attentional zooming and spatial S-R compatibility. Psychological Research, 53, 127–135.

    Article  PubMed  Google Scholar 

  • Tsai, C.-C., Kuo, W.-J., Jing, J.-T., Hung, D. L., & Tzeng, O. J.-L. (2006). A common coding framework in self-other interaction: evidence from joint action task. Experimental Brain Research, 175, 353–362.

    Article  PubMed  Google Scholar 

  • Ulrich, R., Mattes, S., & Miller, J. O. (1999). Doners’s assumption of pure insertion: an evaluation on the basis of response dynamics. Acta Psychologica, 102, 43–75.

    Article  Google Scholar 

  • Valle-Inclán, F. (1996). The locus of interference in the Simon effect: an ERP study. Biological Psycholology, 43, 147–162.

    Article  Google Scholar 

  • Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27, 731–751.

    PubMed  Google Scholar 

  • Xiong, A., & Proctor, R. W. (2015). Referential coding of steering-wheel button presses in a simulated driving cockpit. Journal of Experimental Psychology: Applied (in press).

  • Yamaguchi, M., & Proctor, R. W. (2011). The Simon task with multi-component responses: two loci of response-effect compatibility. Psychological Research, 75, 214–226.

    Article  PubMed  Google Scholar 

  • Yamaguchi, M., & Proctor, R. W. (2012). Multidimensional vector model of stimulus–response compatibility. Psychological Review, 119, 272–303.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Wilfried Kunde, Eric Ruthruff, and two anonymous reviewers for comments on earlier versions of the manuscript. We also thank Andrew Morgan for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Ching Lien.

Appendices

Appendix 1

A summary table for ANOVAs on the mean response time (RT) and proportion of error (PE) as a function of task order (go–nogo task first and 2-choice task second vs. 2-choice task first and go–nogo task second), task type (go–nogo task vs. 2-choice task), object condition (present vs. absent), and correspondence between response location and tone location (corresponding vs. noncorresponding) in Experiment 1

Effect

df

RT

PE

F

p

η 2 p

F

p

η 2 p

Ord

1,22

<1.0

<1.0

Task

1,22

<1.0

35.41

<0.0001

0.62

Obj

1,22

<1.0

<1.0

Corr

1,22

45.20

<0.0001

0.67

30.12

<0.0001

0.58

Ord × Task

1,22

<1.0

<1.0

Ord × Obj

1,22

4.05

0.06

0.16

<1.0

Ord × Corr

1,22

<1.0

<1.0

Task × Obj

1,22

<1.0

<1.0

Task × Corr

1,22

48.82

<0.0001

0.69

37.22

<0.0001

0.63

Obj × Corr

1,22

5.85

<0.05

0.21

1.08

0.31

0.05

Ord × Task × Obj

1,22

3.13

0.09

0.12

<1.0

Ord × Task × Corr

1,22

<1.0

<1.0

Ord × Obj × Corr

1,22

1.0

0.33

0.04

1.03

0.32

0.04

Task × Obj × Corr

1,22

<1.0

3.15

0.09

0.13

Ord × Task × Obj × Corr

1,22

<1.0

<1.0

  1. Ord task order, Obj object condition, Corr correspondence

Appendix 2

A summary table for ANOVAs on the average LRP as a function of task order (go–nogo task first and 2-choice task second vs. 2-choice task first and go–nogo task second), task type (go–nogo task vs. 2-choice task), object condition (present vs. absent), and correspondence between response location and tone location (corresponding vs. noncorresponding) for the four consecutive 100-ms time windows from 0 to 400 ms after stimulus onset in Experiment 1

Effect

df

0–100 ms

100–200 ms

200–300 ms

300–400 ms

F

p

η 2 p

F

p

η 2 p

F

p

η 2 p

F

p

η 2 p

Ord

1,22

1.08

0.31

0.05

<1.0

3.40

0.08

0.13

4.25

0.05

0.16

Task

1,22

<1.0

<1.0

4.81

<0.05

0.18

<1.0

Obj

1,22

<1.0

2.15

0.16

0.09

3.16

0.09

0.50

3.55

0.07

0.14

Corr

1,22

<1.0

7.74

<0.05

0.26

16.05

<0.001

0.42

46.77

<0.0001

0.68

Ord × Task

1,22

<1.0

<1.0

<1.0

1.18

0.29

0.05

Ord × Obj

1,22

<1.0

<1.0

<1.0

<1.0

Ord × Corr

1,22

2.44

0.13

0.10

<1.0

2.16

0.16

0.09

<1.0

Task × Obj

1,22

<1.0

<1.0

<1.0

<1.0

Task × Corr

1,22

3.46

0.08

0.14

1.37

0.25

0.06

2.01

0.17

0.08

2.33

0.14

0.10

Obj × Corr

1,22

<1.0

<1.0

<1.0

<1.0

Ord × Task × Obj

1,22

<1.0

<1.0

<1.0

<1.0

Ord × Task × Corr

1,22

1.10

0.31

0.05

<1.0

<1.0

<1.0

Ord × Obj × Corr

1,22

<1.0

1.30

0.27

0.06

<1.0

<1.0

Task × Obj × Corr

1,22

<1.0

<1.0

2.41

0.13

0.10

1.53

0.23

0.07

Ord × Task × Obj × Corr

1,22

<1.0

4.17

0.05

0.16

2.56

0.12

0.10

2.35

0.14

0.10

  1. Ord task order, Obj object condition, Corr correspondence

Appendix 3

A summary table for ANOVAs on the mean response time (RT) and proportion of error (PE) as a function of task order (go–nogo task first and 2-choice task second vs. 2-choice task first and go–nogo task second), task type (go–nogo task vs. 2-choice task), object condition (present vs. absent), and correspondence between response location and hand-pointing direction (neutral, corresponding, vs. noncorresponding) in Experiment 2

Effect

df

RT

PE

F

p

η 2 p

F

p

η 2 p

Ord

1,22

<1.0

<1.0

Task

1,22

8.98

<0.01

0.29

35.19

<0.0001

0.62

Obj

1,22

<1.0

<1.0

Corr

2,44

4.38

<0.05

0.17

3.72

<0.05

0.14

Ord × Task

1,22

<1.0

<1.0

Ord × Obj

1,22

<1.0

2.80

0.11

0.11

Ord × Corr

2,44

<1.0

1.75

0.19

0.07

Task × Obj

1,22

1.34

0.26

0.06

<1.0

Task × Corr

2,44

1.90

<0.05

0.18

2.02

0.15

0.08

Obj × Corr

2,44

<1.0

1.32

0.27

0.06

Ord × Task × Obj

1,22

<1.0

1.83

0.19

0.08

Ord × Task × Corr

2,44

<1.0

<1.0

Ord × Obj × Corr

2,44

1.19

0.31

0.05

<1.0

Task × Obj × Corr

2,44

1.49

0.24

0.06

1.54

0.23

0.07

Ord × Task × Obj × Corr

2,44

<1.0

<1.0

  1. Ord task order, Obj object condition, Corr correspondence

Appendix 4

A summary table for ANOVAs on the average LRP as a function of task order (go–nogo task first and 2-choice task second vs. 2-choice task first and go–nogo task second), task type (go–nogo task vs. 2-choice task), object condition (present vs. absent), and correspondence between response location and hand-pointing direction (neutral, corresponding, vs. noncorresponding) for the four consecutive 100-ms time windows from 0 to 400 ms after stimulus onset in Experiment 2

Effect

df

0–100 ms

100–200 ms

200–300 ms

300–400 ms

F

p

η 2 p

F

p

η 2 p

F

p

η 2 p

F

p

η 2 p

Ord

1,22

1.70

0.21

0.07

4.45

<0.05

0.17

<1.0

<1.0

Task

1,22

<1.0

<1.0

4.69

<0.05

0.18

<1.0

Obj

1,22

<1.0

<1.0

1.35

0.26

0.06

<1.0

Corr

2,44

2.02

0.15

0.08

20.14

<0.0001

0.48

1.40

0.26

0.06

<1.0

Ord × Task

1,22

<1.0

2.77

0.11

0.11

4.37

<0.05

0.17

<1.0

Ord × Obj

1,22

<1.0

<1.0

<1.0

<1.0

Ord × Corr

2,44

2.03

0.15

0.08

8.06

<0.001

0.27

<1.0

1.01

0.37

0.04

Task × Obj

1,22

<1.0

3.05

0.09

0.12

<1.0

<1.0

Task × Corr

2,44

<1.0

1.64

0.21

0.07

7.58

<0.01

0.26

<1.0

Obj × Corr

2,44

<1.0

1.64

0.21

0.07

<1.0

<1.0

Ord × Task × Obj

1,22

<1.0

<1.0

<1.0

2.21

0.15

0.09

Ord × Task × Corr

2,44

<1.0

1.28

0.29

0.06

<1.0

<1.0

Ord × Obj × Corr

2,44

<1.0

2.67

0.09

0.11

3.10

0.06

0.12

1.41

0.25

0.06

Task × Obj × Corr

2,44

<1.0

<1.0

<1.0

4.20

<0.05

0.16

Ord × Task × Obj × Corr

2,44

3.47

<0.05

0.14

4.15

<0.05

0.16

1.0

0.38

0.04

1.38

0.26

0.06

  1. Ord task order, Obj object condition, Corr correspondence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lien, MC., Pedersen, L. & Proctor, R.W. Stimulus–response correspondence in go–nogo and choice tasks: Are reactions altered by the presence of an irrelevant salient object?. Psychological Research 80, 912–934 (2016). https://doi.org/10.1007/s00426-015-0699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0699-0

Keywords

Navigation