Skip to main content
Log in

Covert motor activity on NoGo trials in a task sharing paradigm: evidence from the lateralized readiness potential

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies on task sharing propose that a representation of the co-actor’s task share is generated when two actors share a common task. An important function of co-representation seems to lie in the anticipation of others’ upcoming actions, which is essential for one’s own action planning, as it enables the rapid selection of an appropriate response. We utilized measures of lateralized motor activation, the lateralized readiness potential (LRP), in a task sharing paradigm to address the questions (1) whether the generation of a co-representation involves motor activity in the non-acting person when it is other agent’s turn to respond, and (2) whether co-representation of the other’s task share is generated from one’s own egocentric perspective or from the perspective of the actor (allocentric). Results showed that although it was the other agent’s turn to respond, the motor system of the non-acting person was activated prior to the other’s response. Furthermore, motor activity was based on egocentric spatial properties. The findings support the tight functional coupling between one’s own actions and actions produced by others, suggesting that the involvement of the motor system is crucial for social interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atmaca S, Sebanz N, Knoblich G (2011) Believe it or not: Sharing tasks with real, imagined and unintentional co-Actors. Exp Brain Res (in press)

  • Atmaca S, Sebanz N, Prinz W, Knoblich G (2008) Action co-representation: the joint SNARC effect. Soc Neurosci 3:410–420

    PubMed  Google Scholar 

  • Avenanti A, Sirigu A, Aglioti SM (2010) Racial bias reduces empathic sensorimotor resonance with other-race pain. Curr Biol 20:1018–1022

    PubMed  CAS  Google Scholar 

  • Avikainen S, Wohlschläger A, Liuhanen S, Hänninen R, Hari R (2003) Impaired mirror- image imitation in Asperger and high-functioning autistic participants. Curr Biol 13:339–341

    PubMed  CAS  Google Scholar 

  • Bekkering H, Wohlschläger A, Gattis M (2000) Imitation of actions in children is goal directed. Q J Exp Psychol 53A:153–164

    Google Scholar 

  • Bird G, Brindley R, Leighton J, Heyes C (2007) General processes, rather than “goals”, explain imitation errors. J Exp Psychol Hum Percept Perform 33:1158–1169

    PubMed  Google Scholar 

  • Blakemore S-J, Frith C (2005) The role of motor contagion in the prediction of action. Neuropsychologia 43:260–267

    PubMed  Google Scholar 

  • Carrillo-de-la-Pena MT, Lastra-Barreira C, Galdo-Alvarez S (2006) Limb (hand vs. foot) and response conflict have similar effects on event-related potential (ERPs) recorded during motor imagery and overt execution. Eur J Neurosci 24:635–643

    PubMed  CAS  Google Scholar 

  • Chiavarino C, Apperly IA, Humphreys GW (2007) Exploring the functional and anatomical bases of mirror-image and anatomical imitation: the role of the frontal lobes. Neuropsychologia 45:784–795

    PubMed  Google Scholar 

  • Colby CL, Duhamel J (1996) Spatial representations for action in parietal cortex. J Neurophysiol 76:2841–2852

    PubMed  CAS  Google Scholar 

  • Coles MGH (1989) Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiol 26:251–269

    CAS  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    PubMed  CAS  Google Scholar 

  • Csibra G (2007) Action mirroring and action interpretation: an alternative account. In: Haggard P, Rosetti Y, Kawato M (eds) Sensorimotor foundations of higher cognition. Attention and Performance XXII. Oxford University Press, Oxford, pp 435–459

    Google Scholar 

  • De Jong R, Wierda M, Mulder G, Mulder LJM (1988) Use of partial stimulus information in response processing. J Exp Psychol Hum Percept Perform 14:682–692

    PubMed  Google Scholar 

  • De Jong R, Liang C-C, Lauber E (1994) Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus-response correspondence. J Exp Psychol Hum Percept Perform 20:731–750

    PubMed  Google Scholar 

  • Dodd MD, Wilson D (2009) Training attention. Interactions between central cues and reflexive attention. Vis Cogn 17:736–754

    Google Scholar 

  • Eimer M, Forster B, Van Velzen J, Prabhu G (2005) Covert manual response preparation triggers attentional shifts: ERP evidence for the premotor theory of attention. Neurppsychologia 43:957–966

    Google Scholar 

  • Engel A, Burke M, Fiehler K, Bien S, Rosler F (2008) How moving objects become animated: the human mirror neuron assimilates non-biological movement patterns. Soc Neurosci 3:368–387

    PubMed  Google Scholar 

  • Flanagan JR, Johansson R (2003) Action plans used in action observation. Nature 424:769–771

    PubMed  CAS  Google Scholar 

  • Gehring WJ, Gratton G, Coles MGH, Donchin E (1992) Probability effects on stimulus evaluation and response processes. J Exp Psychol Hum Percept Perform 18:198–216

    PubMed  CAS  Google Scholar 

  • Gleissner B, Meltzoff AN, Bekkering H (2000) Children’s coding of human action: cognitive factors influencing imitation in 3-year-olds. Dev Sci 3:405–414

    Google Scholar 

  • Gowen E, Bradshaw C, Galpin A, Lawrence A, Poliakoff E (2010) Exploring visuomotor priming following biological and non-biological stimuli. Brain Cogn 74:288–297

    PubMed  CAS  Google Scholar 

  • Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroenceph Clin Neurophysiol 55:468–484

    PubMed  CAS  Google Scholar 

  • Gratton G, Coles MGH, Sirevaag EJ, Eriksen CW, Donchin E (1988) Pre- and poststimulus activation of response channels: a psychophysiological analysis. J Exp Psychol Hum Percept Perform 14:331–344

    PubMed  CAS  Google Scholar 

  • Gratton G, Bosco CM, Kramer AF, Coles MGH, Wickens CD, Donchin E (1990) Event-related brain potential as indices of information extraction and response priming. Electroencephalogr Clin Neurophysiol 75:419–432

    PubMed  CAS  Google Scholar 

  • Guagnano D, Rusconi E, Umiltà CA (2010) Sharing a task or sharing space? On the effect of the confereate in action coding in a detection task. Cogn 114:348–355

    Google Scholar 

  • Guerin B (1993) Social facilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Haueisen J, Knösche TR (2001) Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci 13:786–792

    PubMed  CAS  Google Scholar 

  • Heyes C, Ray E (2004) Spatial S-R compatibility effects in an intentional imitation task. Psychon Bull Rev 11:703–708

    PubMed  Google Scholar 

  • Hjorth B (1975) An on-line information of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39:526–530

    PubMed  CAS  Google Scholar 

  • Hoffmann JE, Subramaniam B (1995) The role of visual attention in saccadic eye movement. Perc Psychophys 57:787–795

    Google Scholar 

  • Hommel B, Colzato LS, van den Wildenberg WPM (2009) How social are task representations? Psychol Sci 20:794–798

    PubMed  Google Scholar 

  • Ishikura T, Inomata K (1995) Effects of angle model demonstration on learning of motor skill. Percep Motor Skills 80:651–658

    CAS  Google Scholar 

  • Jacob P, Jeannerod M (2005) The motor theory of social cognition: a critique. Trends Cogn Sci 9:21–25

    PubMed  Google Scholar 

  • Jentzsch I, Leuthold H, Ridderinkhof KR (2004) Beneficial effects of ambiguous precues: parallel motor preparation or reduced premotoric processing time? Psychophysiol 41:231–244

    Google Scholar 

  • Jonas M, Biermann-Ruben K, Kessler K, Lange R, Baumer T, Siebner HR, Schnitzler A, Munchau A (2007) Observation of a finger or an object movement primes imitative responses differentially. Exp Brain Res 177:255–265

    PubMed  CAS  Google Scholar 

  • Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525

    PubMed  CAS  Google Scholar 

  • Kilner JM, Vargas C, Duval S, Blakemore S-J, Sirigu A (2004) Motor activation prior to observation of a predicted movement. Nat Neurosci 7:1299–1301

    PubMed  CAS  Google Scholar 

  • Knoblich G, Sebanz N (2006) The social nature of perception and action. Curr Direct Psychol Sci 15:99–104

    Google Scholar 

  • Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychol Rev 97:253–270

    PubMed  CAS  Google Scholar 

  • Koski L, Iacoboni M, Dubeau MC, Woods RP, Mazziotta JC (2003) Modulation of cortical activity during different imitative behaviors. J Neurophysiol 89:460–471

    PubMed  Google Scholar 

  • Law SK, Rohrbaugh JW, Adams CM, Eckhardt MJ (1993) Improving spatial and temporal resolution in evoked EEG responses using surface Laplacians. Electroencephalogr Clin Neurophysiol 88:309–322

    PubMed  CAS  Google Scholar 

  • Leighton J, Bird G, Heyes C (2010) ‘Goals’ are not an integral component of imitation. Cogn 114:423–425

    Google Scholar 

  • Leuthold H, Jentzsch I (2002) Distinguishing neural sources of movement preparation and execution. An electrophysiological analysis. Biol Psychol 60:173–198

    PubMed  Google Scholar 

  • Leuthold H, Sommer W, Ulrich R (1996) Partial advance information and response preparation: inferences from the lateralized readiness potential. J Exp Psychol Gen 125:307–323

    PubMed  CAS  Google Scholar 

  • Leuthold H, Sommer W, Ulrich R (2004) Preparing for action: inferences from CNV and LRP. J Psychopysiol 18:77–88

    Google Scholar 

  • Liepelt R, Brass M (2010) Top-down modulation of motor priming by belief about animacy. Exp Psychol 57:221–227

    PubMed  Google Scholar 

  • Lu C-H, Proctor RW (1995) The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychon Bull Rev 2:174–207

    Google Scholar 

  • Maeda F, Kleiner-Fisman G, Pascual-Leone A (2002) Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophysiol 87:1329–1335

    PubMed  Google Scholar 

  • Mandik P (2005) Phenomenal consciousness and the allocentric-egocentric interface. In: Buccheri R, Elitzur AC, Saniga M (eds) Endophysics, time, quantum and the subjective. World Scientific Publishing Co, Singapore, pp 463–485

    Google Scholar 

  • Miller J, Hackley SA (1992) Electrophysiological evidence for temporal overlap among contingent mental processes. J Exp Psychol Gen 121:195–209

    PubMed  CAS  Google Scholar 

  • Müller BCN, Brass M, Kühn S, Tsai C-C, Nieuwboer W, Dijksterhuis A, van Baaren RB (2011a) When pinocchio acts like a human, a wooden hand becomes embodied. Action co-representation for non-biological agents. Neuropsychologia 49(5):1373–1377

    Google Scholar 

  • Müller BCN, Kühn S, van Baaren RB, Dotsch, R, Brass M, Dijksterhuis A (2011b) Perspective taking fosters co-representation of out-group member’s actions. Exp Brain Res (in press)

  • Murray NP, Giggey K (2006) Saccadic latency and attentional control: evidence for the pre-motor theory of attention. North Am J Psychol 8:383–396

    Google Scholar 

  • Newman-Norlund RD, Noordzij ML, Meulenbroek RGJ, Bekkering H (2007a) Exploring the brain basis of joint action: co-ordination of actions, goals and intentions. Soc Neurosci 2:48–65

    PubMed  Google Scholar 

  • Newman-Norlund RD, van Schie HT, van Zuijlen AMJ, Bekkering H (2007b) The mirror neuron system is more active during complementary compared with imitative action. Nat Neurosci 10:817–818

    PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelmen DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage 11:210–216

    PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    PubMed  CAS  Google Scholar 

  • Oostenveld R, Praamstra P, Stegeman DF, Van Oosterom A (2001) Overlap of attention and movement-related activity in lateralized event-related brain potentials. Clin Neurophysiol 112:477–484

    PubMed  CAS  Google Scholar 

  • Osman A, Moore CM (1993) The locus of dual-task interference: psychological refractory effects on movement-related brain potentials. J Exp Psychol Hum Percept Perform 19:1292–1312

    PubMed  CAS  Google Scholar 

  • Osman A, Moore CM, Ulrich R (2003) Temporal organization of covert motor processes during response selection and preparation. Biol Psychol 64:47–75

    PubMed  Google Scholar 

  • Perani D, Fazio F, Borghese NA, Trettamanti M, Ferrari S, Decety J, Gilardi MC (2001) Different brain correlates for watching real and virtual hand actions. NeuroImage 14:749–758

    PubMed  CAS  Google Scholar 

  • Praamstra P, Oostenveld R (2003) Attention and movement-related motor cortex activation: a high-density EEG study of spatial stimulus-response compatibility. Cogn Brain Res 16:309–322

    CAS  Google Scholar 

  • Praamstra P, Plat FM (2001) Failed suppression of direct visuomotor activation in Parkinson’s disease. J Cogn Neurosci 13:31–43

    PubMed  CAS  Google Scholar 

  • Praamstra P, Kourtis D, Nazapour K (2009) Simultaneous preparation of multiple potential movements: Opposing effects of spatial proximity mediated by premotor and parietal cortex. J Neurophysiol 102:2084–2095

    PubMed  Google Scholar 

  • Press C, Ray E, Heyes C (2009) Imitation of lateralised body movements: doing it the hard way. Laterality 14:515–527

    PubMed  Google Scholar 

  • Prinz W (1990) A common-coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between perception and action. Current approaches. Springer, New York, pp 167–201

    Google Scholar 

  • Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154

    Google Scholar 

  • Prinz W (2006) What re-enactment earns us. Cortex 42:515–517

    PubMed  Google Scholar 

  • Ramnani N, Miall C (2004) A system in the human brain for predicting the actions of others. Nat Neurosci 7:85–90

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirro-neuron system. Ann Rev Neurosci 27:169–192

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Riggio L, Dascola I, Umiltà C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favour of a premotor theory of attention. Neuropsychologia 25:31–40

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Riggio L, Sheliga BM (1994) Space and selective attention. In: Umiltà C, Moscovitch M (eds) Attention and performance XV. MIT Press, Cambridge, pp 231–265

    Google Scholar 

  • Ruby P, Decety J (2003) What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking. Eur J Neurosci 17:2475–2480

    PubMed  Google Scholar 

  • Ruys KI, Aarts H (2010) When competition merges people’s behavior: interdependency activates shared action representations. J Exp Soc Psychol 46:1130–1133

    Google Scholar 

  • Sambrook TD (1998) Does visual perspective matter in imitation? Perception 27:1461–1473

    PubMed  CAS  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W (2003) Representing others’ actions: just like one’s own? Cognition 8:B11–B21

    Google Scholar 

  • Sebanz N, Knoblich G, Prinz W (2005) How two share a task: co-representing S-R mappings. J Exp Psychol Hum Percept Perform 31:1234–1246

    PubMed  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W, Wascher E (2006) Twin peaks: an ERP study of action planning and control in co-acting individuals. J Cogn Neurosci 18:859–870

    PubMed  Google Scholar 

  • Sebanz N, Rebbechi D, Knoblich G, Prinz W, Frith CD (2007) Is it really my turn? An event- related fMRI study of task sharing. Soc Neurosci 2:81–95

    PubMed  Google Scholar 

  • Sheliga BM, Riggio L, Rizzolatti G (1994) Orienting of attention and eye movements. Exp Brain Res 98:507–522

    PubMed  CAS  Google Scholar 

  • Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81:174–176

    PubMed  CAS  Google Scholar 

  • Simon JR, Hinrichs JV, Craft JL (1970) Auditory S-R compatibility: reaction time as a function of ear-hand correspondence and ear-response-location correspondence. J Exp Psychol 86:97–102

    PubMed  CAS  Google Scholar 

  • Sommerville JA, Decety J (2006) Weaving the fabric of social interaction: articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychon Bull Rev 13:179–200

    PubMed  Google Scholar 

  • Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U (2004) The human premotor cortex is ‘mirror’ only for biological actions. Curr Biol 14:117–120

    PubMed  CAS  Google Scholar 

  • Teufel C, Fletcher PC, Davis G (2010) Seeing other minds: attributed mental states influence perception. Trends Cogn Sci 14:376–382

    PubMed  Google Scholar 

  • Theeuwes J, Kramer AF, Hahn S, Irwin DE (1998) Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol Sci 9:379–385

    Google Scholar 

  • Tsai C-C, Brass M (2007) Does the human motor system simulate Pinocchio’s actions? Coacting with a human hand versus a wooden hand in a dyadic interaction. Psychol Sci 18:1058–1062

    PubMed  Google Scholar 

  • Tsai C-C, Kuo W-J, Jing J-T, Hung DL, Tzeng OJL (2006) A common coding framework in self-other interaction: evidence from joint action task. Exp Brain Res 175:353–362

    PubMed  Google Scholar 

  • Tsai C-C, Kuo W-J, Hung D, Tzeng OJL (2008) Action co-representation is tuned to other humans. J Cogn Neurosci 20:2015–2024

    PubMed  Google Scholar 

  • Umiltà C, Riggio L, Dascola I, Rizzolatti G (1991) Differential effects of central and peripheral cues on the reorienting of spatial attention. Eur J Cogn Psychol 3:247–267

    Google Scholar 

  • Valle-Inclán F (1996) The locus of interference in the Simon effect: an ERP study. Biol Psychol 43:147–162

    PubMed  Google Scholar 

  • Van der Stigchel S, Theeuwes J (2007) The relationship between covert and overt attention in endogenous cuing. Perc Psychophys 69:719–731

    Google Scholar 

  • Van der Stigchel S, Milles M, Dodd M (2010) Shift and deviate: saccades reveal that shifts of covert attention evoked by trained spatial stimuli are obligatory. Attention Perc Psychophys 72:1244–1250

    Google Scholar 

  • van Schie HT, Mars RB, Coles MGH, Bekkering H (2004) Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 7:549–554

    PubMed  Google Scholar 

  • Vogeley K, Fink GR (2003) Neural correlates of the first-person-perspective. Trends Cogn Sci 7:38–42

    PubMed  Google Scholar 

  • Vogeley K, May M, Ritzl A, Falkai P, Zilles K, Fink GR (2004) Neural correlates of first- person perspective as one constituent of human self-consciousness. J Cogn Neurosci 16:817–827

    PubMed  CAS  Google Scholar 

  • Wascher E, Wauschkuhn B (1996) The interaction of stimulus- and response-related processes measured by event-related lateralizations of the EEG. Electroencephalogr Clin Neurophysiol 99:149–162

    PubMed  CAS  Google Scholar 

  • Welsh TN, Higgins L, Ray M, Weeks DJ (2007) Seeing vs. believing: is believing sufficient to activate the processes of response co-representation? Hum Mov Sci 26:853–866

    PubMed  Google Scholar 

  • Wilson M, Knoblich G (2005) The case for motor involvement in perceiving conspecifics. Psychol Bull 131:460–473

    PubMed  Google Scholar 

  • Wohlschläger A, Bekkering H (2002) Is human imitation based on a mirror-neurone system? Some behavioural evidence. Exp Brain Res 143:335–341

    PubMed  Google Scholar 

  • Wohlschläger A, Gattis M, Bekkering H (2003) Action generation and action perception in imitation: an instance of the ideomotor principle. Philos Trans R Soc Lond B Biol Sci 358:501–515

    PubMed  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    PubMed  CAS  Google Scholar 

  • Wenke D, Atmaca S, Holländer A, Liepelt R, Baess P, Prinz W (2011) What is shared in joint action? Issues of co-representation, response conflict, and agent identification. Rev Phil Psychol (accepted)

  • Yordanova J, Kolev V, Hohnsbein J, Falekenstein M (2004) Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: evidence from high-resolution event-related potentials. Brain 127:351–362

    PubMed  Google Scholar 

  • Zajonc RB (1965) Social facilitation. Science 149:269–271

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Holländer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holländer, A., Jung, C. & Prinz, W. Covert motor activity on NoGo trials in a task sharing paradigm: evidence from the lateralized readiness potential. Exp Brain Res 211, 345–356 (2011). https://doi.org/10.1007/s00221-011-2688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2688-x

Keywords

Navigation