Skip to main content
Log in

Action induction by visual perception of rotational motion

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

A basic process in the planning of everyday actions involves the integration of visually perceived movement characteristics. Such processes of information integration often occur automatically. The aim of the present study was to examine whether the visual perception of spatial characteristics of a rotational motion (rotation direction) can induce a spatially compatible action. Four reaction time experiments were conducted to analyze the effect of perceiving task irrelevant rotational motions of simple geometric figures as well as of gymnasts on a horizontal bar while responding to color changes in these objects. The results show that the participants react faster when the directional information of a rotational motion is compatible with the spatial characteristics of an intended action. The degree of complexity of the perceived event does not play a role in this effect. The spatial features of the used biological motion were salient enough to elicit a motion based Simon effect. However, in the cognitive processing of the visual stimulus, the critical criterion is not the direction of rotation, but rather the relative direction of motion (direction of motion above or below the center of rotation). Nevertheless, this conclusion is tainted with reservations since it is only fully supported by the response behavior of female participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Different colors have different effects on human behavior which is an object of interest in color psychology. There exist findings about wavelength effects on simple reaction time (e.g. Weingarten, 1972; Jones & Wilkinson, 1975; Nissen & Pokorny, 1977). In an experiment of our own conducted in our lab, we tested choice reaction times with different colors on different backgrounds and found that there was no difference between the color red (RGB 255, 0, 0) and blue (RGB 51, 56, 255) on a grey background (RGB 128, 128, 128) (Hofmann, 2012).

  2. In the subsequent experiments of this study (except for Experiment 1b because of the undersized sample) we look for sex differences in the statistical analysis, but will not directly address this issue, because this side effect does not belong to the general purpose of the study.

  3. Both participants wore contact lenses.

  4. Participants made on average 1.3 fixations per trial.

  5. Pillai‘s trace.

  6. Mean difference corresponds to a viewing angle of 0.09° which is smaller than the eye tracking system’s accuracy. We assume that measurement error to be random, so that the mathematical expectation approximates zero with increasing measures. This must be taken into account for the interpretation of this result.

  7. We used only two SOA intervals here because we obtained the largest and most consistent dorbSEs with these intervals in the previous experiments (see Table 1).

  8. A t test showed both dorbSE’s to be significant: lower half, t(9) = 2.64, p = 0.03; upper half, t(9) = 2.28, p = 0.05.

  9. The SOAs of 200 and 400 ms were adequate intervals to elicit an action selection conflict in the previous experiments. Here we surrogated the 200 ms interval by a 600 ms interval due to the higher complexity of the stimulus in Experiment 2.

References

  • Barraza, J. F., & Grzywacz, N. M. (2002). Measurement of angular velocity in the perception of rotation. Vision Research, 42(21), 2457–2462. doi:10.1016/S0042-6989(02)00259-6.

    Article  PubMed  Google Scholar 

  • Bauer, D. W., & Miller, J. (1982). Stimulus-response compatibility and the motor system. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 34(3), 367–380. doi:10.1080/14640748208400849.

    Article  Google Scholar 

  • Bosbach, S., Prinz, W., & Kerzel, D. (2004). A Simon effect with stationary moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 30(1), 39–55. doi:10.1037/0096-1523.30.1.39.

    PubMed  Google Scholar 

  • Bosbach, S., Prinz, W., & Kerzel, D. (2005). Is direction position? Position- and direction-based correspondence effects in tasks with moving stimuli. The Quarterly Journal of Experimental Psychology Section A, 58(3), 467–506. doi:10.1080/02724980443000016.

    Article  Google Scholar 

  • Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems, II. Effects of inequality of variance and of correlation between errors in the two-way classification. The Annals of Mathematical Statistics, 25(3), 484–498. doi:10.1214/aoms/1177728717.

    Article  Google Scholar 

  • Cho, Y. S., & Proctor, R. W. (2005). Representing response position relative to display location: influence on orthogonal stimulus–response compatibility. The Quarterly Journal of Experimental Psychology Section A, 58(5), 839–864. doi:10.1080/02724980443000359.

    Article  Google Scholar 

  • Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229–240. doi:10.1037/0096-1523.27.1.229.

    PubMed  Google Scholar 

  • Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics, 40(4), 225–240. doi:10.3758/BF03211502.

    Article  PubMed  Google Scholar 

  • Eriksen, C. W., & Yeh, Y.-Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583–597. doi:10.1037/0096-1523.11.5.583.

    PubMed  Google Scholar 

  • Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10(1), 126–132. doi:10.1037/0278-7393.10.1.126.

    Article  Google Scholar 

  • Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bulletin of the Psychonomic Society, 23(6), 443–446. doi:10.3758/BF03329847.

    Article  Google Scholar 

  • Geisser, S., & Greenhouse, S. W. (1958). An extension of Box’s results on the use of the F-distribution in multivariate analysis. The Annals of Mathematical Statistics, 29(3), 885–891. doi:10.1214/aoms/1177706545.

    Article  Google Scholar 

  • Gellatly, A., & Cole, G. (1999). Do equiluminant object onsets capture visual attention? Journal of Experimental Psychology. Human Perception & Performance, 25(6), 1609. doi:10.1037/0096-1523.25.6.1609.

    Article  Google Scholar 

  • Grèzes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does Perception of Biological Motion Rely on Specific Brain Regions? NeuroImage, 13(5), 775–785. doi:10.1006/nimg.2000.0740.

    Article  PubMed  Google Scholar 

  • Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain Areas Involved in Perception of Biological Motion. Journal of Cognitive Neuroscience, 12(5), 711–720. doi:10.1162/089892900562417.

    Article  PubMed  Google Scholar 

  • Guiard, Y. (1983). The lateral coding of rotations. A study of the Simon effect with wheel-rotation responses. Journal of Motor Behavior, 15(4), 331–342. doi:10.1080/00222895.1983.10735303.

    Article  PubMed  Google Scholar 

  • Handa, R. J., & McGivern, R. F. (2015). Steroid Hormones, Receptors, and Perceptual and Cognitive Sex Differences in the Visual System. Current Eye Research, 40(2), 110–127. doi:10.3109/02713683.2014.952826.

    Article  PubMed  Google Scholar 

  • Hays, W. L. (1994). Statistics (5th ed.). Fort Worth: Harcourt Brace College Publishers.

    Google Scholar 

  • Hedge, A., & Marsh, N. (1975). The effect of irrelevant spatial correspondences on two-choice response-time. Acta Psychologica, 39(6), 427–439. doi:10.1016/0001-6918(75)90041-4.

    Article  PubMed  Google Scholar 

  • Hofmann, J. (2012). Der Einfluss von Farbe auf die Reaktionszeit im Wettkampfsport: eine empirische Grundlagenuntersuchung zur Frage danach, ob der Vorteil bestimmter Kleiderfarben im Wettkampfsport auf farbabhängige Reaktionszeiten zurückgeführt werden kann [Impact of color on reaction time in competitive sports: A basic examination about the question whether the advantage of special colors of sportswear is due to color dependent reaction times]. (Unpublished master‘s thesis). University of Kassel, Kassel.

  • Hommel, B. (1993a). The relationship between stimulus processing and response selection in the Simon task: evidence for a temporal overlap. Psychological Research, 55, 280–290. doi:10.1007/BF00419688.

    Article  Google Scholar 

  • Hommel, B. (1993b). The role of attention for the Simon effect. Psychological Research, 55(3), 208–222. doi:10.1007/BF00419608.

    Article  PubMed  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937. doi:10.1017/S0140525X01000103.

    Article  PubMed  Google Scholar 

  • Jones, P. D., & Wilkinson, H. (1975). Latency differences to monochromatic stimuli maesured by disjunctive reaction time. Perceptual and Motor Skills, 41(1), 55–59. doi:10.2466/pms.1975.41.1.55.

    Article  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility–A model and taxonomy. Psychological Review, 97(2), 253–270. doi:10.1037/0033-295X.97.2.253.

    Article  PubMed  Google Scholar 

  • Kunde, W. (2006). Antezedente Effektrepräsentationen in der Verhaltenssteuerung [Antecedent effect representations in behavioral control]. Psychologische Rundschau, 57(1), 34–42. doi:10.1026/0033-3042.57.1.34.

    Article  Google Scholar 

  • Lippa, Y., & Adam, J. (2001). An explanation of orthogonal S-R compatibility effects that vary with hand or response position: the end-state comfort hypothesis. Perception and Psychophysics, 63(1), 156–174. doi:10.3758/BF03200510.

    Article  PubMed  Google Scholar 

  • Lu, S., & Zhou, K. (2005). Stimulus-driven attentional capture by equiluminant color change. Psychonomic Bulletin & Review, 12(3), 567–572. doi:10.3758/BF03193806.

    Article  Google Scholar 

  • MacKay, D. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature, 181(4607), 507–508. doi:10.1038/181507a0.

    Article  PubMed  Google Scholar 

  • Memelink, J., & Hommel, B. (2012). Intentional weighting: a basic principle in cognitive control. Psychological Research, 77(3), 249–259. doi:10.1007/s00426-012-0435-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaels, C. F. (1988). S-R compatibility between response position and destination of apparent motion: evidence of the detection of affordances. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 231–240. doi:10.1037/0096-1523.14.2.231.

    PubMed  Google Scholar 

  • Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18(1), 37–45. doi:10.1016/j.tics.2013.10.011.

    Article  PubMed  Google Scholar 

  • Morikawa, K., & McBeath, M. K. (1992). Lateral motion bias associated with reading direction. Vision Research, 32(6), 1137–1141. doi:10.1016/0042-6989(92)90014-A.

    Article  PubMed  Google Scholar 

  • Nicoletti, R., & Umiltà, C. (1994). Attention shifts produce spatial stimulus codes. Psychological Research, 56(3), 144–150. doi:10.1007/BF00419701.

    Article  PubMed  Google Scholar 

  • Nissen, M. J., & Pokorny, J. (1977). Wavelength effects on simple reaction time. Perception and Psychophysics, 22(5), 457–462. doi:10.3758/BF03199511.

    Article  Google Scholar 

  • Pavlova, M. A. (2012). Biological Motion Processing as a Hallmark of Social Cognition. Cerebral Cortex, 22(5), 981–995. doi:10.1093/cercor/bhr156.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. doi:10.1080/00335558008248231.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1990). A common coding approach to perception and action. In O. Newmann, W. Prinz, & P. Bieri (Eds.), Relationships between perception and action. Current approaches. Berlin, New York: Springer-Verlag.

  • Prinz, W. (1992). Why don’t we perceive our brain states? European Journal of Cognitive Psychology, 4(1), 1–20. doi:10.1080/09541449208406240.

    Article  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154. doi:10.1080/713752551.

    Article  Google Scholar 

  • Proctor, R. W., Van Zandt, T., Lu, C.-H., & Weeks, D. J. (1993). Stimulus-response compatibility for moving stimuli: perception of affordances or directional coding? Journal of Experimental Psychology: Human Perception and Performance, 19(1), 81–91. doi:10.1037/0096-1523.19.1.81.

    PubMed  Google Scholar 

  • Proctor, R. W., Wang, D.-Y. D., & Pick, D. F. (2004). Stimulus–response compatibility with wheel-rotation responses: will an incompatible response coding be used when a compatible coding is possible? Psychonomic Bulletin & Review, 11(5), 841–847. doi:10.3758/BF03196710 .

    Article  Google Scholar 

  • Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In A. T. Duchowski, K. S. Karn, & J. W. Senders (Eds.), Proceedings. Eye Tracking Research & Applications Symposium 2000 : Palm Beach Gardens, FL, November 6-8, 2000 (pp. 71–78). New York: Association for Computing Machinery. https://www.cs.drexel.edu/salvucci/publications/Salvucci-ETRA00.pdf.

  • Senior, C., Barnes, J., Giampietroc, V., Simmons, A., Bullmore, E. T., Brammer, M., & David, A. S. (2000). The functional neuroanatomy of implicit-motion perception or ‘representational momentum’. Current Biology, 10(1), 16–22. doi:10.1016/S0960-9822(99)00259-6 .

    Article  PubMed  Google Scholar 

  • Simon, J. R., & Craft, J. L. (1970). Effects of altered display-control relationships on information processing from a visual display. Journal of Applied Psychology, 54(3), 253–257. doi:10.1037/h0029083 .

    Article  Google Scholar 

  • Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: the effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51(3), 300–304. doi:10.1037/h0020586 .

    Article  PubMed  Google Scholar 

  • Simon, J. R., & Small, A. M. (1969). Processing auditory information: interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433–435. doi:10.1037/h0028034.

    Article  PubMed  Google Scholar 

  • Steinman, R. M., Cushman, W. B., & Martins, A. J. (1982). The precision of gaze. A review. Human neurobiology, 1(2), 97–109.

    PubMed  Google Scholar 

  • Stins, J. F., & Michaels, C. F. (1997). Stimulus-Response Compatibility Is Information-Action Compatibility. Ecological Psychology, 9(1), 25–45. doi:10.1207/s15326969eco0901_2.

    Article  Google Scholar 

  • Stoffer, T. H., & Umiltà, C. (1997). Spatial stimulus coding and the focus of attention in S-R compatibility and the Simon effect. In Bernhard Hommel and Wolfgang Prinz (Ed.), Advances in Psychology : Theoretical Issues in Stimulus-Response Compatibility (pp. 181–208). North-Holland.

  • Wang, D.-Y. D., Proctor, R. W., & Pick, D. F. (2003). The Simon Effect With Wheel-Rotation Responses. Journal of Motor Behavior, 35(3), 261–273. doi:10.1080/00222890309602139

  • Weigelt, M., Bosbach, S., Schack, T., & Kunde, W. (2006). Wenn wir anderen Menschen beim Handeln zusehen, interpretieren wir gleichzeitig auch deren Intention [If we watch other’s acting we simultaneously interpret their intention]. In M. Raab, A. Arnold, & K. Gärtner (Eds.), Schriftenreihe Human Performance and Sport (Vol. 2, pp. 49–52)., Zukunft der Sportspiele. fördern, fordern, forschen Flensburg: University Press.

    Google Scholar 

  • Weingarten, F. S. (1972). Wavelength Effect on Visual Latency. Science, 176(4035), 692–694. doi:10.1126/science.176.4035.692.

    Article  PubMed  Google Scholar 

  • Werkhoven, P., & Koenderink, J. J. (1991). Visual processing of rotary motion. Perception and Psychophysics, 49(1), 73–82. doi:10.3758/BF03211618.

    Article  PubMed  Google Scholar 

  • Wittfoth, M., Buck, D., Fahle, M., & Herrmann, M. (2006). Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception. NeuroImage, 32(2), 921–929. doi:10.1016/j.neuroimage.2006.03.034.

    Article  PubMed  Google Scholar 

  • Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40(8), 925–930. doi:10.1016/S0042-6989(99)00239-4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Classen.

Ethics declarations

Ethical standards

All experiments of this study have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants gave their informed consent prior to their inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Classen, C., Kibele, A. Action induction by visual perception of rotational motion. Psychological Research 80, 785–804 (2016). https://doi.org/10.1007/s00426-015-0693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0693-6

Keywords

Navigation