Skip to main content
Log in

Identification of a cinnamoyl-CoA reductase from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering.

A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The CDS and protein sequence of CcCCR1 have been submitted to NCBI GenBank (accession number: OR416486).

Abbreviations

4CL:

4-Coumarate: CoA ligase

CCR:

Cinnamoyl-CoA reductase

PAL:

Phenylalanine ammonia-lyases

t-CA:

trans-Cinnamaldehyde

References

  • Baltas M, Lapeyre C, Bedos-Belval F et al (2005) Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiol Biochem 43(8):746–753

    Article  CAS  PubMed  Google Scholar 

  • Bang HB, Lee YH, Kim SC et al (2016) Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb Cell Fact 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao N, Li N, Qi Q et al (2017) Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. Planta 245(1):61–75

    Article  CAS  PubMed  Google Scholar 

  • Chen XB, Zhang YN, Wan HX et al (2016) Stereoselective organocatalytic oxidation of alcohols to enals: a homologation method to prepare polyenes. Chem Commun 52(17):3532–3535

    Article  CAS  Google Scholar 

  • Chen CJ, Chen H, Zhang Y et al (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • China Pharmacopeia Commission (2020) Pharmacopoeia of the People’s Republic of China, vol 1. Chinese Medical Science and Technology Press, Beijing, p 142

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Davidson NM, Oshlack A (2014) Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol 15:410

    PubMed  PubMed Central  Google Scholar 

  • Doyle AA, Stephens JC (2019) A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 139:104405

    Article  CAS  PubMed  Google Scholar 

  • Doyle AA, Krämer T, Kavanagh K et al (2019) Cinnamaldehydes: synthesis, antibacterial evaluation, and the effect of molecular structure on antibacterial activity. Res Chem 1:100013

    CAS  Google Scholar 

  • Escamilla-Treviño LL, Shen H, Uppalapati SR et al (2010) Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol 185(1):143–155

    Article  PubMed  Google Scholar 

  • Gao H, Xu D, Zhang H et al (2020) Transcriptomics and metabolomics analyses reveal the differential accumulation of phenylpropanoids between Cinnamomum cassia Presl and Cinnamomum cassia Presl var. macrophyllum Chu. Ind Crop Prod 148:112282

    Article  CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I et al (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross GG, Kreiten W (1975) Reduction of coenzyme a thioesters of cinnamic acids with an enzyme preparation from lignifying tissue of Forsythia. FEBS Lett 54(2):259–262

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Yao H, Chen W et al (2022) Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. Hortic Res 9:uhac223

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Sakamoto D, Okamura D (2016) One-pot synthesis of (S)-baclofen via aldol condensation of acetaldehyde with diphenylprolinol silyl ether mediated asymmetric michael reaction as a key step. Org lett 18(1):4–7

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C et al (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193(4):997–1008

    Article  CAS  PubMed  Google Scholar 

  • Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TW (2022) Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol Sin 43(3):712–723

    Article  CAS  PubMed  Google Scholar 

  • Kim ME, Na JY, Lee JS (2018) Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol Immunotoxicol 40(3):219–224

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh S, Singh RKP (2010) Electrochemical synthesis of α, β-unsaturated aldehydes at Pt cathode in the dimethylformamide solvent. J Indian Chem Soc 87(9):1145–1148

    CAS  Google Scholar 

  • Lacombe E, Hawkins S, van Doorsselaere J et al (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11(3):429–441

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E et al (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57(7):1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Leple JC, Dauwe R, Morreel K et al (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19(11):3669–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YQ, Kong DX, Huang RS et al (2013a) Variations in essential oil yields and compositions of Cinnamomum cassia leaves at different developmental stages. Ind Crop Prod 47:92–101

    Article  CAS  Google Scholar 

  • Li YQ, Kong DX, Wu H (2013b) Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind Crop Prod 41:269–278

    Article  CAS  Google Scholar 

  • Li G, Yang Q, Zhang Y et al (2014) Cloning and analysis of the gene encoding Cinnamoyl-CoA reductase from Caragana korshinkii Kom. China Biotechnol 34(1):50–56

    Google Scholar 

  • Liu J, Zhu J, Jiang HL et al (2010) Pd-catalyzed cascade Heck–Saegusa: direct synthesis of enals from aryl iodides and allyl alcohol. Chem Commun 46(3):415–417

    Article  CAS  Google Scholar 

  • Liu L, Stein A, Wittkop B et al (2012) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124(8):1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Mateen S, Rehman MT, Shahzad S et al (2019) Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur J Pharmacol 852:14–24

    Article  CAS  PubMed  Google Scholar 

  • Mirdita M, Schütze K, Moriwaki Y et al (2022). ColabFold: making protein folding accessible to all. Nat Methods 19:679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan H, Zhou R, Louie GV et al (2014) Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell 26(9):3709–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichon M, Courbou I, Beckert M et al (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38(4):671–676

    Article  CAS  PubMed  Google Scholar 

  • Pomar F, Merino F, Barceló AR (2002) O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220(1–2):17–28

    Article  CAS  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(W1):W320–W324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohloff J, Bones AM (2005) Volatile profiling of Arabidopsis thaliana - Putative olfactory compounds in plant communication. Phytochemistry 66(16):1941–1955

    Article  CAS  PubMed  Google Scholar 

  • Sattler SA, Walker AM, Vermerris W et al (2017) Structural and biochemical characterization of cinnamoyl-CoA reductases. Plant Physiol 173(2):1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Meester B, De Ralph J et al (2019) Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 56:230–239

    Article  CAS  PubMed  Google Scholar 

  • Wengenmayer H, Ebel J, Grisebach H (1976) Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycine max). Eur J Biochem 65(2):529–536

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Luo D, Xu D et al (2015) CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. Plant J 83(3):375–387

    Article  CAS  PubMed  Google Scholar 

  • Zhang SL, Xie HX, Song AG et al (2011) Efficient preparation of trans-α, β-unsaturated aldehydes from saturated aldehydes by oxidative enamine catalysis. Sci China Chem 54:1932–1936

    Article  CAS  Google Scholar 

  • Zhou R, Jackson L, Shadle G et al (2010) Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. PNAS 107(41):17803–17808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wei G, Hu Z, et al. (2019) Benzaldehyde synthases are encoded by cinnamoyl-CoA reductase genes in cucumber (Cucumis sativus L.). bioRxiv https://doi.org/10.1101/2019.12.26.889071

Download references

Acknowledgement

We are grateful for financial support of the Guangdong Basic and Applied Basic Research Foundation (2020B1515420007) and the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province, China (2022SDZG07) and the Nature Science Foundation of China (32370383).

Author information

Authors and Affiliations

Authors

Contributions

Hong Wu and Yanqun Li conceived and designed the research. Peng Ye analyzed data and wrote the manuscript. Jianmu Su and Jianhao Lin assisted during the experiments. All authors read and approved the manuscripts.

Corresponding authors

Correspondence to Yanqun Li or Hong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by De-Yu Xie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5065 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Su, J., Lin, J. et al. Identification of a cinnamoyl-CoA reductase from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis. Planta 259, 138 (2024). https://doi.org/10.1007/s00425-024-04419-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04419-w

Keywords

Navigation