Skip to main content
Log in

Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cinnamoyl CoA reductase (CCR; EC 1.2.1.44) is the first enzyme specific to the biosynthetic pathway leading to monolignols. Arabidopsis thaliana (L.) Heynh. plants transformed with a vector containing a full-length AtCCR1 cDNA in an antisense orientation were obtained and characterized. The most severely down-regulated homozygous plants showed drastic alterations to their phenotypical features. These plants had a 50% decrease in lignin content accompanied by changes in lignin composition and structure, with incorporation of ferulic acid into the cell wall. Microscopic analyses coupled with immunolabelling revealed a decrease in lignin deposition in normally lignified tissues and a dramatic loosening of the secondary cell wall of interfascicular fibers and vessels. Evaluation of in vitro digestibility demonstrated an increase in the enzymatic degradability of these transgenic lines. In addition, culture conditions were shown to play a substantial role in lignin level and structure in the wild type and in the effects of AtCCR1 repression efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–e.
Fig. 3.
Fig. 4a–j.
Fig. 5.

Similar content being viewed by others

Abbreviations

ASCCR:

CCR anti-sense plants

CC:

culture conditions

CCR:

cinnamoyl CoA reductase

G:

guaiacyl units

H:

hydroxyphenyl units

IVDMD:

in vitro dry matter digestibility

IVNDFD:

in vitro NDF digestibility

NDF:

neutral detergent fiber

S:

syringyl units

TEM:

transmission electron microscopy

WS:

Wassilevskija

References

  • Aufrère J, Michalet-Doreau B (1983) In vivo digestibility and prediction of digestibility of some by-products. European Economic Community seminar, 26–29 September 1983. Mlle Gontrode, Belgium

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197

    CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris, Sci Vie 316:1194–1199

    CAS  Google Scholar 

  • Becker D (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18:203

    CAS  PubMed  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    CAS  Google Scholar 

  • Burlat V, Kwon M, Davin LB, Lewis NG. (2001). Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    Article  CAS  PubMed  Google Scholar 

  • Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001a) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282

    Article  CAS  PubMed  Google Scholar 

  • Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001b) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  CAS  PubMed  Google Scholar 

  • Chapple CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    CAS  PubMed  Google Scholar 

  • Dence C (1992) Lignin determination. In: Dence C, Lin S (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 33–61

  • Dharmawardhana DP, Ellis BE, Carlson JE (1992) Characterization of vascular lignification in Arabidopsis thaliana. Can J Bot 70:2238–2244

    CAS  Google Scholar 

  • Dolstra O, Medema JH (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings of the 15th congress maize and sorghum section of Eucarpia, Baden, Austria, June 4–8, pp 258–270

  • Estelle M, Somerville CR (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

    CAS  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures, and some applications). USDA ARS Agricultural handbook 379. US government Printing Office, Washington, DC

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  CAS  PubMed  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050

    CAS  PubMed  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  CAS  PubMed  Google Scholar 

  • Joseleau J-P, Ruel K (1997) Study of lignification by noninvasive techniques in growing maize internodes—an investigation by Fourier transform infrared, cross-polarisation-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol 114:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    CAS  PubMed  Google Scholar 

  • Lapierre C, Pollet B, Rolando R (1995) New insights into the molecular architecture of hardwood lignins by chemical degradation methods. Res Chem Intermed 21:397–412

    CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Davin LB (1994) Evolution of lignan and neolignan biochemical pathways. In: Nes WD (ed) Isopentonoids and other natural products: evolution and function. ACS Symposium Series, No 562, Washington DC, pp 202–246

    Google Scholar 

  • Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275:6537–6545

    CAS  PubMed  Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585

    CAS  PubMed  Google Scholar 

  • Méchin V, Argillier O, Barrière Y, Mila I, Polet B, Lapierre C (2000). Relationships of cell-wall composition to in vitro cell-wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580

    Article  Google Scholar 

  • Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple CCS (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619–6623

    Article  CAS  PubMed  Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    CAS  PubMed  Google Scholar 

  • Pinçon G, Chabannes M, Lapierre C, Pollet B, Ruel K, Joseleau JP, Boudet AM, Legrand M (2001) Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-O-methyltransferase I and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene. Consequences for plant development and lignin synthesis. Plant Physiol 126:145–155

    Article  PubMed  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O'Connell A, Schuch W, Grima-Pettenati J, Boudet A-M (1998) Down-regulation in cinnamoyl-CoA reductase induces significant changes of lignins profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Ruel K, Barnoud F, Eriksson KE (1981) Micromorphological and ultrastructural aspects of spruce wood degradation by wild type Sporotrichum pulverulentum and its cellulase-less mutant Cel 44. Holzforschung 35:157–171

    CAS  Google Scholar 

  • Ruel K, Faix O, Joseleau JP (1994) New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. J Trace Microprobe Tech 12:247–265

    CAS  Google Scholar 

  • Ruel K, Burlat V, Joseleau JP (1999) Relationship between ultrastructural topochemistry of lignin and wood properties. Int Assoc Wood Anat J 20:203–211

    Google Scholar 

  • Ruel K, Chabannes M, Boudet A-M, Legrand M, Joseleau J-P (2001) Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly. Phytochemistry 57:875–882

    Article  CAS  PubMed  Google Scholar 

  • Ruel K, Montiel MD, Goujon T, Jouanin L, Burlat V, Joseleau JP (2002) Inter-relation between lignin deposition and polysaccharide matrices during the assembly of the plant cell walls. Plant Biol 3:1–7

    Google Scholar 

  • Sarkanen KV, Hergert HL (1971) Classification and distribution. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 43–94

    Google Scholar 

  • Srebotnik E, Messner K (1994) A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386

    Google Scholar 

  • Struik PC (1983) Physiology of forage maize (Zea mays L.) in relation to its productivity. PhD thesis, Wageningen, The Netherlands

  • Terashima N, Fukushima K, Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA Madison, Wis, pp 247–270

  • Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6:987–1017

    CAS  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17:2362

    CAS  Google Scholar 

  • Zhong R, Morrison WH, Negrel J, Ye ZH (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2045

    Google Scholar 

  • Zhong R, Ripperger. A, Ye ZH (2000). Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiol 123:59–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Magalie Pichon (CNRS, Toulouse) who performed the CCR activity assays and to Frédéric Legée (INRA-INA, Grignon) who did the Klason measurements. They thank Jean-Pascal Meunier, Joël Talbotec and Hervé Ferry (INRA, Versailles) who took care of the plants in the greenhouse and the climatized chambers. The authors also wish to thank Deborah Goffner (CNRS, Toulouse) for corrections and critical review of the manuscript. Cell wall digestibility assays were performed in the framework of the Génoplante program Af 1999-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goujon, T., Ferret, V., Mila, I. et al. Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217, 218–228 (2003). https://doi.org/10.1007/s00425-003-0987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-0987-6

Keywords

Navigation