Skip to main content
Log in

SbYS1 and SbWRKY72 regulate Cd tolerance and accumulation in sweet sorghum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation.

Abstract

Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this article.

Abbreviations

DMA:

Deoxymugineic acid

IRT:

Iron-regulated transporter

NA:

Nicotianamine

YSL:

Yellow Stripe-Like

References

  • Ahmed RI, Ding A, Xie M, Kong Y (2018) Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor). Int J Mol Sci 19:2983

    PubMed  PubMed Central  Google Scholar 

  • Al Chami Z, Amer N, Al Bitar L, Cavoski I (2015) Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol 12:3957–3970

    CAS  Google Scholar 

  • Banakar R, Fernandez AA, Abadia J, Capell T, Christou P (2017) The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnol J 15:423–432

    CAS  PubMed  Google Scholar 

  • Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J 63:229–240

    CAS  PubMed  Google Scholar 

  • Bonfranceschi BA, Flocco CG, Donati ER (2009) Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment. J Hazard Mater 165:366–371

    CAS  PubMed  Google Scholar 

  • Chen YH, Liu MJ, Deng YW, Zhong FL, Xu B, Hu L, Wang MK, Wang G (2017) Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, Napier grass (Pennisetum purpureum Schumach). J Soil Sediment 17:2786–2796

    CAS  Google Scholar 

  • Chen HM, Zhang C, Guo HP, Hu YM, He Y, Jiang D (2018) Overexpression of a Miscanthus sacchariflorus yellow stripe-like transporter MsYSL1 enhances resistance of Arabidopsis to cadmium by mediating metal ion reallocation. Plant Growth Regul 85:101–111

    CAS  Google Scholar 

  • Chu HH, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL (2010) Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol 154:197–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conte SS, Walker EL (2012) Genetic and biochemical approaches for studying the yellow stripe-like transporter family in plants. Curr Top Membr 69:295–322

    CAS  PubMed  Google Scholar 

  • Conte SS, Chu HH, Rodriguez DC, Punshon T, Vasques KA, Salt DE, Walker EL (2013) Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like 6 localize to internal cellular membranes and are involved in metal ion homeostasis. Front Plant Sci 4:283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    CAS  PubMed  Google Scholar 

  • Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 365:279–299

    CAS  PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    CAS  PubMed  Google Scholar 

  • Fan PX, Nie LL, Jiang P, Feng JJ, Lv SL, Chen XY, Bao H, Guo J, Tai F, Wang JH, Jia WT, Li YX (2013) Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. PLoS ONE 8(11):e80595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng SS, Tan JJ, Zhang YX, Liang S, Xiang SQ, Wang H, Chai TY (2017) Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum. Plant Cell Rep 36:281–296

    CAS  PubMed  Google Scholar 

  • Feng JJ, Jia WT, Lv SL, Bao H, Miao FF, Zhang X, Wang JH, Li JH, Li DS, Zhu C, Li SZ, Li YX (2018) Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol J 16:558–571

    CAS  PubMed  Google Scholar 

  • Fukushima S, Mori M, Sugano S, Takatsuji H (2016) Transcription factor WRKY62 plays a role in pathogen defense and hypoxia-responsive gene expression in rice. Plant Cell Physiol 57:2541–2551

    CAS  PubMed  Google Scholar 

  • Gietz D, Stjean A, Woods RA, Schiestl RH (1992) Improved method for high-efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han KJ, Pitman WD, Alison MW, Harrell DL, Viator HP, McCormick ME, Gravois KA, Kim M, Day DF (2012) Agronomic considerations for sweet sorghum biofuel production in the south-central USA. Bioenerg Res 5:748–758

    Google Scholar 

  • Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe(III)-phytosiderophore specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298–4302

    CAS  PubMed  Google Scholar 

  • Hong CY, Cheng D, Zhang GQ, Zhu DD, Chen YH, Tan MP (2017) The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 482:1504–1510

    CAS  PubMed  Google Scholar 

  • Hou Y, Wang Y, Tang L, Tong X, Wang L, Liu L, Huang S, Zhang J (2019) SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. Science 16:499–510

    CAS  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia WT, Lv SL, Feng JJ, Li JH, Li YX, Li SZ (2016) Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Environ Sci Pollut Res 23:18823–18831

    CAS  Google Scholar 

  • Jia WT, Miao FF, Lv SL, Feng JJ, Zhou SF, Zhang X, Wang DLY, Li SZ, Li YX (2017) Identification for the capability of Cd-tolerance, accumulation and translocation of 96 sorghum genotypes. Ecotox Environ Safe 145:391–397

    CAS  Google Scholar 

  • Khairy M, El-Safty SA, Shenashen MA (2014) Environmental remediation and monitoring of cadmium. Trend Anal Chem 62:56–68

    CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, Lee S, Hwang DJ (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11:5

    PubMed  PubMed Central  Google Scholar 

  • Li SZ (2013) The roadmap of the development of biofuel industry. China Brew 32:77–81 (In Chinese)

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 18:350–382

    Google Scholar 

  • Liu YT, Chen ZS, Hong CY (2011) Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula. J Hazard Mater 189:724–731

    CAS  PubMed  Google Scholar 

  • Liu H, Zhao HX, Wu LH, Liu AN, Zhao FJ, Xu WH (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    CAS  PubMed  Google Scholar 

  • Maathuis FJ, Diatloff E (2013) Roles and functions of plant mineral nutrients. Methods Mol Biol 953:1–21

    CAS  PubMed  Google Scholar 

  • Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure J (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    CAS  PubMed  Google Scholar 

  • Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wiren N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Bot 64:2871–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metwali ER, Gowayed SH, Al-Maghrabi O, Mosleh Y (2013) Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat (Triticum aestivium L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Appl Sci J 21:301–314

    CAS  Google Scholar 

  • Mirza Z, Haque MM, Gupta M (2022) WRKY transcription factors: a promising way to deal with arsenic stress in rice. Mol Biol Rep 49:10895–10904

    CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J 46:563–572

    CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    CAS  PubMed  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    CAS  PubMed  Google Scholar 

  • Raghuwanshi A, Birch RG (2010) Genetic transformation of sweet sorghum. Plant Cell Rep 29:997–1005

    CAS  PubMed  Google Scholar 

  • Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL (2022) A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369

    CAS  PubMed  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    PubMed  PubMed Central  Google Scholar 

  • Salman M, Athar M, Farooq U, Nazir S, Nazir H (2013) Insight to rapid removal of Pb(II), Cd(II), and Cu(II) from aqueous solution using an agro-based adsorbent Sorghum bicolor L. biomass. Desalin Water Treat 51:4390–4401

    CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    CAS  PubMed  Google Scholar 

  • Schaefer HR, Dennis S, Fitzpatrick S (2020) Cadmium: Mitigation strategies to reduce dietary exposure. J Food Sci 85:260–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng Y, Yan X, Huang Y, Han Y, Zhang C, Ren Y, Fan T, Xiao F, Liu Y, Cao S (2019) The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ 42:891–903

    CAS  PubMed  Google Scholar 

  • Soudek P, Petrova S, Vankova R, Song J, Vanek T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24

    CAS  PubMed  Google Scholar 

  • Sparkes I, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    CAS  PubMed  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-washings. Soil Sci Plant Nutr 22:423–433

    CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    CAS  Google Scholar 

  • Tang X, Li Q, Wu M, Lin L, Scholz M (2016) Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J Environ Manage 181:646–662

    CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno D, Rombola AD, Iwashita T, Nomoto K, Ma JF (2007) Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol 174:304–310

    CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Ma JF (2009) Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. J Exp Bot 60:3513–3520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Li Y, Zhang YX, Chai TY (2013) Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Rep 32:651–662

    CAS  PubMed  Google Scholar 

  • Wang Q, Gu M, Ma X, Zhang H, Wang Y, Cui J, Gao W, Gui J (2015) Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): Potential use for ecological phytoremediation in Cd-contaminated soils. Environ Sci Pollut Res 22:16758–16771

    CAS  Google Scholar 

  • Wang QL, Qu GP, Kong XX, Yan Y, Li JG, Jin JB (2018) Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development. J Integr Plant Biol 60:924–937

    CAS  PubMed  Google Scholar 

  • Wang P, Chen HP, Kopittke PM, Zhao FJ (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    CAS  PubMed  Google Scholar 

  • Wanke D, Harter K (2009) Analysis of plant regulatory DNA sequences by the yeast-one-hybrid assay. Methods Mol Biol 479:291–309

    CAS  PubMed  Google Scholar 

  • Woods J (2001) The potential for energy production using sweet sorghum in southern Africa. Energy Sustain Dev 5:31–38

    Google Scholar 

  • Yang G, Wang C, Wang Y, Guo Y, Zhao Y, Yang C, Gao C (2016) Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Sci Rep 6:18752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, He SB (2021) Tobacco system for studying protein colocalization and interactions. Methods Mol Biol 2297:167–174

    CAS  PubMed  Google Scholar 

  • Zhang C, Tong C, Cao L, Zheng P, Tang X, Wang L, Miao M, Liu Y, Cao S (2023) Regulatory module WRKY33-ATL31-IRT1 mediates cadmium tolerance in Arabidopsis. Plant Cell Environ 46:1653–1670

    CAS  PubMed  Google Scholar 

  • Zheng LQ, Fujii M, Yamaji N, Sasaki A, Yamane M, Sakurai I, Sato K, Ma JF (2011) Isolation and characterization of a barley yellow stripe-like gene, HvYSL5. Plant Cell Physiol 52:765–774

    CAS  PubMed  Google Scholar 

  • Zheng LQ, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24:3767–3782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziarati P, Tajik S, Sawicka B, Cruz-Rodriguez L, Vambol V, Vambol S (2023) Detoxification of lead and cadmium in pharmaceutical effluent by home-made food wastes. Adv Biol Earth Sci 8:129–139

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24010306) and the National Natural Science Foundation of China (31971837).

Author information

Authors and Affiliations

Authors

Contributions

LY: conceived and supervised this research, and revised the manuscript. JW: wrote the original draft, JW and GZ: performed experiments and analyzed data. LK and LS: helped revise and check the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yinxin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4536 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Guo, Z., Lv, S. et al. SbYS1 and SbWRKY72 regulate Cd tolerance and accumulation in sweet sorghum. Planta 259, 100 (2024). https://doi.org/10.1007/s00425-024-04388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04388-0

Keywords

Navigation