Skip to main content
Log in

Elucidation of the GAUT gene family in eight Rosaceae species and function analysis of PbrGAUT22 in pear pollen tube growth

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins.

Abstract

In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1–6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Abbreviations

CW:

Cell wall

DSD:

Dispersed duplicates

GATL:

Galacturonosyltransferase-like

GAUT:

Galacturonosyltransferase

HG:

Homogalacturonan

HPC:

Hours post-culture

WGD:

Whole-genome duplication

References

  • Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, Moremen KW, Mohnen D (2018) A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J Biol Chem 293(49):19047–19063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    Article  CAS  PubMed  Google Scholar 

  • Bacic A (2006) Breaking an impasse in pectin biosynthesis. Proc Natl Acad Sci USA 103(15):5639–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server issue):W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344(14):1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube–spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160(4):1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang P, de Graaf BHJ, Zhang H, Jiao H, Tang C, Zhang S, Wu J (2018) Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell 30(5):1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49(7):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • de Godoy F, Bermúdez L, Lira BS, de Souza AP, Elbl P, Demarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, Fernie AR, Carrari F, Rossi M (2013) Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot 64(8):2449–2466

    Article  PubMed  PubMed Central  Google Scholar 

  • de Graaf BH, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FC, Franklin-Tong VE (2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444(7118):490–493

    Article  PubMed  Google Scholar 

  • Du J, Anderson CT, Xiao C (2022) Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nat Plants 8(4):332–340

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhou H, Chen J, Jiang X, Tao S, Wu J, Zhang S (2015) Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. Physiol Plant 153(4):603–615

    Article  CAS  PubMed  Google Scholar 

  • Geitmann A (2010) How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sex Plant Reprod 23(1):63–71

    Article  PubMed  Google Scholar 

  • Gibalová A, Renák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 70(5):581–601

    Article  PubMed  Google Scholar 

  • Gibalová A, Steinbachová L, Hafidh S, Bláhová V, Gadiou Z, Michailidis C, Műller K, Pleskot R, Dupľáková N, Honys D (2017) Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reprod 30(1):1–17

    Article  PubMed  Google Scholar 

  • Higashiyama T (2018) Plant reproduction: autocrine machinery for the long journey of the pollen tube. Curr Biol 28(6):R266–R269

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486

    Article  PubMed  Google Scholar 

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45(D1):D1040–D1045

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Zhou G, Avci U, Gu X, Jones C, Yin Y, Xu Y, Hahn MG (2009) Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Mol Plant 2(5):1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Zhou G, Yin Y, Xu Y, Pattathil S, Hahn MG (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol 155(4):1791–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Zhou G, Abdeen AA, Schafhauser J, Richardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG (2013) GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage. Plant Physiol 163(3):1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(Database issue):D1202–D1210

    Article  CAS  PubMed  Google Scholar 

  • Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, Horgan C, Palanivelu R, Johnson MA (2013) Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23(13):1209–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Pi M, Gao Q, Liu Z, Kang C (2019) Updated annotation of the wild strawberry Fragaria vesca V4 genome. Hortic Res 6:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Linsmith G, Rombauts S, Montanari S, Deng CH, Celton JM, Guérif P, Liu C, Lohaus R, Zurn JD, Cestaro A, Bassil NV, Bakker LV, Schijlen E, Gardiner SE, Lespinasse Y, Durel CE, Velasco R, Neale DB, Chagné D, Van de Peer Y, Troggio M, Bianco L (2019) Pseudo-chromosome-length genome assembly of a double haploid “Bartlett” pear (Pyrus communis L.). Gigascience 8(12):giz138

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Luo M, Yan X, Yu C, Li S (2016) Characterization of genes coding for galacturonosyltransferase-like (GATL) proteins in rice. Genes Genom 38:917–929

    Article  CAS  Google Scholar 

  • Liu X, Yang M, Liu X, Wei K, Cao X, Wang X, Wang X, Guo Y, Du Y, Li J, Liu L, Shu J, Qin Y, Huang Z (2019) A putative bHLH transcription factor is a candidate gene for male sterile 32, a locus affecting pollen and tapetum development in tomato. Hortic Res 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lund CH, Stenbæk A, Atmodjo MA, Rasmussen RE, Moller IE, Erstad SM, Biswal AK, Mohnen D, Mravec J, Sakuragi Y (2020) Pectin synthesis and pollen tube growth in Arabidopsis involves three GAUT1 Golgi-anchoring proteins: GAUT5, GAUT6, and GAUT7. Front Plant Sci 11:585774

    Article  PubMed  PubMed Central  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17(3):705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100(26):15682–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98(18):10481–10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34(14):2490–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orfila C, Sørensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JS, Knox JP, Scheller HV (2005) QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta 222(4):613–622

    Article  CAS  PubMed  Google Scholar 

  • Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosystems 109(3):397–402

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19(1):237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Qiao X, Li M, Li L, Yin H, Wu J, Zhang S (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol 15:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH (2019) Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 20(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralet MC, Cabrera JC, Bonnin E, Quéméner B, Hellìn P, Thibault JF (2005) Mapping sugar beet pectin acetylation pattern. Phytochemistry 66(15):1832–1843

    Article  CAS  PubMed  Google Scholar 

  • Rounds CM, Lubeck E, Hepler PK, Winship LJ (2011) Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol 157(1):175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24(5):499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1(4):2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    Article  CAS  PubMed  Google Scholar 

  • Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA 103(13):5236–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanBuren R, Wai CM, Colle M, Wang J, Sullivan S, Bushakra JM, Liachko I, Vining KJ, Dossett M, Finn CE, Jibran R, Chagné D, Childs K, Edger PP, Mockler TC, Bassil NV (2018) A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience 7(8):giy094

    Article  PubMed  PubMed Central  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS, International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Paterson AH (2012) Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci 1256:1–14

    Article  PubMed  Google Scholar 

  • Wang L, Wang W, Wang YQ, Liu YY, Wang JX, Zhang XQ, Ye D, Chen LQ (2013) Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Mol Plant 6(4):1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Zhang RZ, Guo JJ, Liu DM, Li AL, Fan RC, Mao L, Zhang XQ (2014) Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One 9(1):e84781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung CR, Xu X (2014) LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 26(7):2843–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  Google Scholar 

  • Zheng L, Wu H, Qanmber G, Ali F, Wang L, Liu Z, Yu D, Wang Q, Xu A, Yang Z (2020) Genome-wide study of the GATL gene family in Gossypium hirsutum L. reveals that GhGATL genes act on pectin synthesis to regulate plant growth and fiber elongation. Genes (Basel) 11(1):64

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yin H, Chen J, Liu X, Gao Y, Wu J, Zhang S (2016) Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Exp Patterns 20(1):11–21

    Article  CAS  Google Scholar 

  • Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman JM, Qin Y, Zhu X, Yang Z (2021) Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev Cell 56(7):1030–1042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Agricultural Science and Technology Innovation Fund (CX(22)3044), the Fundamental Research Funds for the Central Universities Priority (KYQN2022047), the National Natural Science Foundation of China (32172543, 32102358), Natural Science Foundation of Jiangsu Province (BK20210394), the Earmarked Fund for China Agriculture Research System (CARS-28), Hainan Yazhou Bay Seed Lab Project (B22E11002) and Academic Program Development of Jiangsu Higher Education Institutions. The bioinformatics analysis was supported by the Bioinformatics Center of Nanjing Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juyou Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Tang, C., Lv, S. et al. Elucidation of the GAUT gene family in eight Rosaceae species and function analysis of PbrGAUT22 in pear pollen tube growth. Planta 257, 68 (2023). https://doi.org/10.1007/s00425-023-04103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04103-5

Keywords

Navigation