Skip to main content
Log in

Variations in Circadian Clock Organization & Function: A Journey from Ancient to Recent

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Circadian clock components exhibit structural variations in different plant systems, and functional variations during various abiotic stresses. These variations bear relevance for plant fitness and could be important evolutionarily.

Abstract

All organisms on earth have the innate ability to measure time as diurnal rhythms that occur due to the earth's rotations in a 24-h cycle. Circadian oscillations arising from the circadian clock abide by its fundamental properties of periodicity, entrainment, temperature compensation, and oscillator mechanism, which is central to its function. Despite the fact that a myriad of research in Arabidopsis thaliana illuminated many detailed aspects of the circadian clock, many more variations in clock components’ organizations and functions remain to get deciphered. These variations are crucial for sustainability and adaptation in different plant systems in the varied environmental conditions in which they grow. Together with these variations, circadian clock functions differ drastically even during various abiotic and biotic stress conditions. The present review discusses variations in the organization of clock components and their role in different plant systems and abiotic stresses. We briefly introduce the clock components, entrainment, and rhythmicity, followed by the variants of the circadian clock in different plant types, starting from lower non-flowering plants, marine plants, dicots to the monocot crop plants. Furthermore, we discuss the interaction of the circadian clock with components of various abiotic stress pathways, such as temperature, light, water stress, salinity, and nutrient deficiency with implications for the reprogramming during these stresses. We also update on recent advances in clock regulations due to post-transcriptional, post-translation, non-coding, and micro-RNAs. Finally, we end this review by summarizing the points of applicability, a remark on the future perspectives, and the experiments that could clear major enigmas in this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

The dataset used for analysis in the current study is available at NCBI repository GEO accession Server with BioProject ID: PRJNA548235 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA548235.

References

  • Ahmad M, Jarillo JA, Smirnova O et al (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mole Cell 1(7):939–948

    Article  CAS  Google Scholar 

  • Allen T, Koustenis A, Theodorou G, Somers DE et al (2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18(10):2506–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Blanco C, Andrade J, Becker C et al (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166(2):481–491

    Article  Google Scholar 

  • Anderson JM, Park YI, Chow WS (1997) Photoinactivation and photoprotection of photosystem II in nature. Physiol Plant 100(2):214–223

    Article  CAS  Google Scholar 

  • Anwer MU, Davis A, Davis SJ, Quint M (2020) Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. The Plant J 101(6):1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S et al (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115(5):721–733

    Article  CAS  PubMed  Google Scholar 

  • Blau J, Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99(6):661–671

    Article  CAS  PubMed  Google Scholar 

  • Bonnot T, Blair EJ, Cordingley SJ, Nagel DH (2021) Circadian coordination of cellular processes and abiotic stress responses. Curr Opin Plant Biol 64:102133

    Article  CAS  PubMed  Google Scholar 

  • Bordage S, Sullivan S, Laird J et al (2016) Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks. New Phytol 212(1):136–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Box MS, Huang BE, Domijan M et al (2015) ELF3 controls thermoresponsive growth in Arabidopsis. Curr Biol 25(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24(11):683–690

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Jiang L, Song S, Jing R, Xu G (2006) AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cell Mol Biol Lett 11(4):526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao SQ, Song YQ, Su L (2007) Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biol Plant 51(2):359–362

    Article  CAS  Google Scholar 

  • Casal JJ, Qüesta JI (2018) Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol 217(3):1029–1034

    Article  PubMed  Google Scholar 

  • Casal JJ, Sanchez RA, Yanovsky MJ (1997) The function of phytochrome A. Plant Cell Environ 20(6):813–819

    Article  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ et al (1999) Cryptochromes: blue light receptors for plants and animals. Science 284(5415):760–765

    Article  CAS  PubMed  Google Scholar 

  • Chang YG, Tseng R, Kuo NW et al (2012) Rhythmic ring–ring stacking drives the circadian oscillator clockwise. PNAS 109(42):16847–16851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YY, Wang Y, Shin LJ et al (2013) Iron is involved in the maintenance of circadian period length in A. thaliana. Plant Physiol 161(3):1409–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WW, Takahashi N, Hirata Y et al (2020) A mobile ELF4 delivers circadian temperature information from shoots to roots. Nature Plants 6(4):416–426

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary S, Thakur S, Majeed A et al (2019) Exploring microRNA profiles for circadian clock and flowering development regulation in Himalayan Rhododendron. Genomics 111(6):1456–1463

    Article  CAS  PubMed  Google Scholar 

  • Chow BY, Sanchez SE, Breton G et al (2014) Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. Curr Biol 24(13):1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coesel S, Mangogna M, Ishikawa T et al (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10(6):655–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SE, Golden SS (2015) Circadian rhythms in cyanobacteria. Microbiol Mol Biol Rev 79(4):373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corellou F, Schwartz C, Motta JP et al (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21(11):3436–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA et al (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13(6):1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covington MF, Maloof JN, Straume M et al (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9(8):1–18

    Article  Google Scholar 

  • Coyne K, Davis MM, Mizoguchi T et al (2019) Temporal restriction of salt inducibility in expression of salinity-stress related gene by the circadian clock in Solanum lycopersicum. Plant Biotechnol 36(3):195–200

    Article  CAS  Google Scholar 

  • Dattolo E, Ruocco M, Brunet C et al (2014) Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Mar Environ Res 101:225–236

    Article  CAS  PubMed  Google Scholar 

  • Delker C, van Zanten M, Quint M (2017) Thermosensing enlightened. Trends Plant Sci 22(3):185–187

    Article  CAS  PubMed  Google Scholar 

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12(12):2499–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Lv J, Shi Y et al (2019) EGR 2 phosphatase regulates OST 1 kinase activity and freezing tolerance in Arabidopsis. EMBO J 38(1):e99819

    Article  PubMed  Google Scholar 

  • Dodd AN, Gardner MJ, Hotta CT et al (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318(5857):1789–1792

    Article  CAS  PubMed  Google Scholar 

  • Doi K, Izawa T, Fuse T et al (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 8:926–936

    Article  Google Scholar 

  • Dong CH, Hu X, Tang W et al (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mole Cell Biol 26(24):9533–9543

    Article  CAS  Google Scholar 

  • Duc C, Cellier F, Lobréaux S, Briat JF et al (2009) Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee. J Biol Chem 284(52):36271–36281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza C, Degenkolbe T, Caldana C et al (2010) Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS ONE 5(11):e14101

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezer D, Jung JH, Lan H et al (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants 3(7):1–12

    Article  Google Scholar 

  • Fan SC, Lin CS, Hsu PK et al (2009) The Arabidopsis nitrate transporter NRT1. 7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21(9):2750–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farinas B, Mas P (2011) Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J 66(2):318–329

    Article  CAS  PubMed  Google Scholar 

  • Faure S, Turner AS, Gruszka D et al (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. PNAS USA 109(21):8328–8333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehér B, Kozma-Bognár L, Kevei É et al (2011) Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. The Plant J 67(1):37–48

    Article  PubMed  Google Scholar 

  • Feng YZ, Yu Y, Zhou YF et al (2020) A natural variant of miR397 mediates a feedback loop in circadian rhythm. Plant Physiol 182(1):204–214

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Mockler TC (2012) Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biol Direct 7(1):1–15

    Article  Google Scholar 

  • Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. In: The Arabidopsis Book/American society of plant biologists 1: e0058

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137(3):961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fustin JM, Doi M, Yamaguchi Y, Hida H et al (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155(4):793–806

    Article  CAS  PubMed  Google Scholar 

  • Gawroński P, Ariyadasa R, Himmelbach A et al (2014) A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat. Genetics 196(4):1253–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Fernie, AR, Gibon Y, et al (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers, pp 723–740. https://doi.org/10.1515/BC.2000.093

  • Gil KE, Park CM (2019) Thermal adaptation and plasticity of the plant circadian clock. New Phytol 221(3):1215–1229

    Article  PubMed  Google Scholar 

  • Gil KE, Kim WY, Lee HJ et al (2017) ZEITLUPE contributes to a thermoresponsive protein quality control system in Arabidopsis. Plant Cell 29(11):2882–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould PD, Locke JC, Larue C et al (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18(5):1177–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granada A, Hennig RM, Ronacher B et al (2009) Phase response curves: elucidating the dynamics of coupled oscillators. Meth Enzymol 454:1–27

    Article  CAS  Google Scholar 

  • Guo H, Yang H, Mockler TC et al (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279(5355):1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez RA, Stokes TL, Thum K et al (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. PNAS USA 105(12):4939–4944

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall A, Bastow RM, Davis SJ, Hanano S et al (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 11:2719–2729

    Article  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343(6258):536–540

    Article  CAS  PubMed  Google Scholar 

  • Harding LW Jr, Heinbokel JF (1984) Periodicities of photosynthesis and cell division: Behavior of phase-lagged replicate cultures of Ditylum brightwellii a diurnally varying photic regime. Mar Ecology Progress Ser Oldendorf 15(3):225–232

    Article  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290(5499):2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL, Panda S, Kay SA (2001) Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 17(1):215–253

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Bell LJ, Webb AA (2011) Interactions between plant circadian clocks and solute transport. J Exp Bot 62(7):2333–2348

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Hearn TJ, Bell LJ et al (2013) Metabolic regulation of circadian clocks. Semin Cell Dev Biol 24(5):414–421

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Román Á, Arshad W (2015) Nutrient homeostasis within the plant circadian network. Front Plant Sci 6:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes S, Sharma A, Fraser DP et al (2017) UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr Biol 27(1):120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazen SP, Naef F, Quisel T et al (2009) Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 10(2):1–12

    Article  Google Scholar 

  • Heintzen C, Nater M, Apel K, Staiger D (1997) AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. PNAS USA 94(16):8515–8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmes H, Henriques R, Jang IC et al (2012) Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms. Plant Cell Physiol 53(12):2016–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques R, Wang H, Liu J et al (2017) The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol 216(3):854–867

    Article  CAS  PubMed  Google Scholar 

  • Hoffman L, DaCosta M, Ebdon JS et al (2012) Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environ Exp Bot 79:11–20

    Article  CAS  Google Scholar 

  • Holm K, Källman T, Gyllenstrand N et al (2010) Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol 10(1):1–14

    Article  Google Scholar 

  • Hsu PY, Harmer SL (2012) Circadian phase has profound effects on differential expression analysis. PLoS ONE 7(11):e49853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PY, Devisetty UK, Harmer SL (2013) Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife 2:e00473

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu W, Franklin KA, Sharrock RA, Jones MA, Harmer SL, Lagarias JC (2013) Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. PNAS USA 110(4):1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Nusinow DA (2016) Into the evening: complex interactions in the Arabidopsis circadian clock. Trends Genet 32(10):674–686

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Zhu Y et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. PNAS USA 103(45):16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa T, Mihara M, Suzuki Y et al (2011) OsGIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23(5):1741–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James AB, Syed NH, Bordage S et al (2012) Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24(3):961–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John S, Olas JJ, Mueller-Roeber B (2021) Regulation of alternative splicing in response to temperature variation in plants. J Exp Bot 72(18):6150–6163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CB, Kirby J, Naxakis G et al (1999) Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 51(4):507–510

    Article  CAS  Google Scholar 

  • Jones MA, Williams BA, McNicol J et al (2012) Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects. Plant Cell 24(10):4066–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MA, Morohashi K, Grotewold E et al (2019) Arabidopsis JMJD5/JMJ30 acts independently of LUX ARRHYTHMO within the plant circadian clock to enable temperature compensation. Front Plant Sci 10:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouannet V, Crespi M (2011) Long nonprotein-coding RNAs in plants. In: Long non-coding RNAs. Progress in Molecular and Subcellular Biology PMSB. Springer, Berlin, Heidelberg. 51:179–200

  • Juntawong P, Bailey-Serres J (2012) Dynamic light regulation of translation status in Arabidopsis thaliana Front. Plant Sci 3:66

    CAS  Google Scholar 

  • Kehr J, Hustiak F, Walz C et al (1998) Transgenic plants changed in carbon allocation pattern display a shift in diurnal growth pattern. Plant J 16(4):497–503

    Article  CAS  PubMed  Google Scholar 

  • Kiba T, Henriques R, Sakakibara H et al (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19(8):2516–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiełbowicz-Matuk A, Czarnecka J (2014) Interplays of plant circadian clock and abiotic stress response networks. In: Emerging Technologies and management of crop stress tolerance. Biological Techniques 1:487–506. Academic Press, Elsevier.

  • Kim JS, Jung HJ, Lee HJ, Kim KA et al (2008) GLYCINE-RICH RNA-BINDING PROTEIN7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55(3):455–466

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Ali Z, Park HJ et al (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Comm 4(1):1–13

    Article  Google Scholar 

  • Kolmos E, Herrero E, Bujdoso N et al (2011) A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis. Plant Cell 23(9):3230–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota A, Kita S, Ishizaki K et al (2014) Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat Comm 5(1):1–9

    Article  CAS  Google Scholar 

  • Kwon YJ, Park MJ, Kim SG et al (2014) Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol 14(1):1–15

    Article  Google Scholar 

  • Larner VS, Franklin KA, Whitelam GC (2018) Photoreceptors and light signalling pathways in plants. Annu Plant Rev Endog Plant Rhythms 21(107):10–1002

    Google Scholar 

  • Larrondo LF, Olivares-Yanez C, Baker CL, Loros JJ, Dunlap JC (2015) Circadian rhythms. Decoupling circadian clock protein turnover from circadian period determination. Science 347:1257277

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau OS, Huang X, Charron J-B, Lee J-H, Li G, Deng XW (2011) Interaction of Arabidopsis DET1 with CCA1 and LHY in Mediating Transcriptional Repression in the Plant Circadian Clock. Mol Cell 43(5):703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C-REPEAT BINDING FACTOR (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. PNAS USA 109(37):15054–15059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Bae K, Edery I (1998) The drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER–TIM complex. Neuron 21(4):857–867

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee DW, Lee Y et al (2009) Heat shock protein cognate 70–4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21(12):3984–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Mas P, Seo PJ (2016) MYB96 shapes the circadian gating of ABA signalling in Arabidopsis. Sci Rep 6(1):1–11

    Google Scholar 

  • Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28(23):3745–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MW, Liu W, Lam HM et al (2019) Characterization of two growth period QTLs reveals modification of PRR3 genes during soybean domestication. Plant Cell Physiol 60(2):407–420

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li YH, Li Y et al (2020) A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mole Plant 13(5):745–759

    Article  CAS  Google Scholar 

  • Liang L, Zhang Z, Cheng N et al (2021) The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. Plant, Cell & Env 44(3):842–855

    Article  CAS  Google Scholar 

  • Lidder P, Gutiérrez RA, Salomé PA et al (2005) Circadian control of mRNA stability: association with DST-mediated mRNA decay. Plant Physiol 138:2374–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew LC, Hecht V, Laurie RE et al (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 21(10):3198–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew LC, Hecht V, Sussmilch FC et al (2014) The pea photoperiod response gene STERILE NODES is an ortholog of LUX ARRHYTHMO. Plant Physiol 165(2):648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CJ, Yang K, Hong JK et al (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119(4):373–383

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. The Plant J 10(5):893–902

    Article  CAS  PubMed  Google Scholar 

  • Linde AM, Eklund DM, Kubota A et al (2017) Early evolution of the land plant circadian clock. New Phytol 216(2):576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C et al (2001) ELF3 encodes a circadian clock–regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13(6):1293–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MJ, Wu SH, Chen HM et al (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol 8(1):566

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Hu W, Murakawa Y et al (2013) Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep 3(1):1–11

    Google Scholar 

  • Liu C, Qu X, Zhou Y et al (2018) OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant Cell Environ 41(3):630–645

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138:2280–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Zhao X, Hu Y et al (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49(5):773–779

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Dong L, Fang C et al (2020) Stepwise selection on homologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52(4):428–436

    Article  CAS  PubMed  Google Scholar 

  • MacGregor DR, Gould P, Foreman J et al (2013) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 is required for circadian periodicity through the promotion of nucleo-cytoplasmic mRNA export in Arabidopsis. Plant Cell 25(11):4391–4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeed N, Panigrahi K, Sukla LB et al (2020) Regulatory mechanisms across networks of the circadian clock and senescence pathways. J Plant Biochem Biotechnol 29(4):665–674

    Article  Google Scholar 

  • Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. PNAS USA 109(52):21540–21545. https://doi.org/10.1073/pnas.1217022110

    Article  PubMed  PubMed Central  Google Scholar 

  • Manasa SL, Panigrahy M, Panigrahi KCS, Rout GR (2022) Overview of cold stress regulation in plants. The Bot Rev 88:359–387

    Article  Google Scholar 

  • Marshall CM, Tartaglio V, Duarte M, Harmon FG (2016) The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool temperatures and temperature-dependent alternative splicing. Plant Cell 28(10):2560–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408(6809):207–211

    Article  PubMed  Google Scholar 

  • Más P, Alabadí D, Yanovsky MJ et al (2003a) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15(1):223–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003b) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426(6966):567–570

    Article  PubMed  Google Scholar 

  • Matsubara K, Ogiso-Tanaka E, Hori K et al (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53(4):709–716

    Article  CAS  PubMed  Google Scholar 

  • McBlain BA, Bernard RL (1987) A new gene affecting the time of flowering and maturity in soybeans. J Hered 78(3):160–162

    Article  Google Scholar 

  • McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7(8):736–741

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Biol 52(1):139–162

    Article  CAS  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung CR (2019) The plant circadian oscillator. Biology 8(1):14

    Article  CAS  PubMed Central  Google Scholar 

  • Missra A, Ernest B, Lohoff T et al (2015) The circadian clock modulates global daily cycles of mRNA ribosome loading. Plant Cell 27(9):2582–2599. https://doi.org/10.1105/tpc.15.00546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Kitayama M, Takayama C, Yamashino T (2015) Insight into a physiological role for the EC night-time repressor in the Arabidopsis circadian clock. Plant Cell Physiol 56(9):1738–1747

    Article  CAS  PubMed  Google Scholar 

  • Moraes TA, Mengin V, Annunziata MG et al (2019) Response of the circadian clock and diel starch turnover to one day of low light or low CO2. Plant Physiol 179(4):1457–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller NA, Wijnen CL, Srinivasan A et al (2016) Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48(1):89–93. https://doi.org/10.1038/ng.3447

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Tago Y, Yamashino T, Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48(1):110–121

    Article  CAS  PubMed  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT et al (2011) Coincident light and clock regulation of PSEUDORESPONSE REGULATOR protein 37 (PRR37) controls photoperiodic flowering in sorghum. PNAS USA 108(39):16469–16474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamichi N, Kusano M, Fukushima A et al (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50(3):447–462

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kiba T, Henriques R et al (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22(3):594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2 2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50(7):1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50(4):838–854

    Article  CAS  PubMed  Google Scholar 

  • Nose M, Watanabe A (2014) Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (Lf) D. Don). BMC Plant Biol 14(1):1–19

    Google Scholar 

  • O’Neill JS, Van Ooijen G, Dixon LE et al (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469(7331):554–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Oakenfull RJ, Davis SJ (2017) Shining a light on the Arabidopsis circadian clock. Plant Cell Environ 40(11):2571–2585

    Article  CAS  PubMed  Google Scholar 

  • Ohara T, Fukuda H, Tokuda IT (2015) Phase response of the Arabidopsis thaliana circadian clock to light pulses of different wavelengths. J Biol Rhythms 30(2):95–103

    Article  PubMed  Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B et al (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530(7590):331–335. https://doi.org/10.1038/nature16548

    Article  CAS  PubMed  Google Scholar 

  • Panigrahy M, Ranga A, Das J, Panigrahi K (2019) Shade tolerance in Swarnaprabha rice is associated with higher rate of panicle emergence and positively regulated by genes of ethylene and cytokinin pathway. Sci Rep 9(1):1–17

    Article  Google Scholar 

  • Panigrahy M, Singh A, Das S, Panigrahi K (2021) Co-action of ABA, brassinosteriod hormone pathways and differential regulation of different transcript isoforms during cold-and-dark induced senescence in Arabidopsis. J Plant Biochem Biotechnol 31:489–510

  • Panigrahy M, Panigrahi KC, Poli Y, Ranga A, Majeed N (2022) Integrated expression analysis of small RNA, degradome and microarray reveals complex regulatory action of miRNA during prolonged shade in Swarnaprabha rice. Biology 11(5):798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Xu ZY, Kim SY et al (2016) Spatial regulation of ABCG25, an ABA exporter, is an important component of the mechanism controlling cellular ABA levels. Plant Cell 28(10):2528–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea-Resa C, Hernández-Verdeja T, López-Cobollo R et al (2012) LSM proteins provide accurate splicing and decay of selected transcripts to ensure normal Arabidopsis development. Plant Cell 24(12):4930–4947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Santángelo S, Mancini E, Francey LJ et al (2014) Role for LSM genes in the regulation of circadian rhythms. PNAS USA 111(42):15166–15171. https://doi.org/10.1073/pnas.1409791111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen J, Rredhi A, Szyttenholm J, Mittag M (2022) Evolution of circadian clocks along the green lineage. Plant Physiol. https://doi.org/10.1093/plphys/kiac141

    Article  PubMed  Google Scholar 

  • Piechulla B, Brinker M, Wissel K (2001) Circadian gene expression in angiosperms and gymnosperms. Endocytobiosis Cell Res 14(1/2):33–44

    Google Scholar 

  • Pizarro A, Hayer K, Lahens NF, Hogenesch JB (2012) CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res 41(D1):D1009–D1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokhilko A, Ebenhöh O (2015) Mathematical modelling of diurnal regulation of carbohydrate allocation by osmo-related processes in plants. J R Soc Interface 12(104):20141357. https://doi.org/10.1098/rsif.2014.1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokhilko A, Fernández AP, Edwards KD et al (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mole Syst Biol 8(1):574

    Article  Google Scholar 

  • Quail PH, Boylan MT, Parks BM et al (1995) Phytochromes: photosensory perception and signal transduction. Science 268(5211):675–680

    Article  CAS  PubMed  Google Scholar 

  • Rawat R, Takahashi N, Hsu PY, Jones MA et al (2011) REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 7(3):e1001350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K (2012) Aberrant growth and lethality of A. thaliana deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res 40:5615–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332(6025):103–106

    Article  CAS  PubMed  Google Scholar 

  • Robertson FC, Skeffington AW, Gardner MJ et al (2009) Interactions between circadian and hormonal signalling in plants. Plant Mol Biol 69(4):419–427. https://doi.org/10.1007/s11103-008-9407-4

    Article  CAS  PubMed  Google Scholar 

  • Romanowski A, Yanovsky MJ (2015) Circadian rhythms and post-transcriptional regulation in higher plants. Front Plant Sci 6:437

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan SL, Ma HS, Wang SH et al (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11(1):1–15

    Article  Google Scholar 

  • Saito H, Ogiso-Tanaka E, Okumoto Y et al (2012) Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short-and long-day conditions. Plant Cell Physiol 53(4):717–728

    Article  CAS  PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Envion 28(1):21–38

    Article  Google Scholar 

  • Salomé PA, Michael TP, Kearns EV et al (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in A. thaliana. Plant Physiol 129(4):1674–1685

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomé PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22(11):3650–3661

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomé PA, Oliva M, Weigel D, Krämer U (2013) Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. The EMBO J 32(4):511–523

    Article  PubMed  Google Scholar 

  • Sanchez SE, Petrillo E, Beckwith EJ, Zhang X et al (2010) A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468(7320):112–116

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Villarreal A, Shin J, Bujdoso N et al (2013) TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. The Plant J 76(2):188–200

    CAS  PubMed  Google Scholar 

  • Sartor F, Eelderink-Chen Z, Aronson B et al (2019) Are there circadian clocks in non-photosynthetic bacteria? Biology 8(2):41

    Article  CAS  PubMed Central  Google Scholar 

  • Seo PJ, Mas P (2014) Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis. Plant Cell 26(1):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Mas P (2015) STRESSing the role of the plant circadian clock. Trends Plant Sci 20(4):230–237

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park MJ, Lim MH et al (2012) A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24(6):2427–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serikawa M, Miwa K, Kondo T, Oyama T (2008) Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba. Plant Physiol 146(4):1952–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalit-Kaneh A, Kumimoto RW, Filkov V, Harmer SL (2018) Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. PNAS USA 115(27):7147–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Irfan M, Kumar A, Kumar P et al (2021) Recent insights into plant circadian clock response against abiotic stress. J Plant Growth Regul, pp 1–14.

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Silva CS, Nayak A, Lai X, Hutin S et al (2020) Molecular mechanisms of evening complex activity in Arabidopsis. PNAS USA 117(12):6901–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon NM, Graham CA, Comben NE et al (2020) The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol 183(1):317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siré C, Moreno AB, Garcia-Chapa M et al (2009) Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett 583(6):1039–1044

    Article  PubMed  Google Scholar 

  • Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125(3):485–494

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Smith RW, To BJ, Millar AJ et al (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336(6084):1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Favory JJ, Gruber H et al (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33(1):88–103

    CAS  PubMed  Google Scholar 

  • Syed NH, Prince SJ, Mutava RN et al (2015) Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean. J Exp Bot 66(22):7129–7149

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10(1):1–14

    Article  Google Scholar 

  • Takeuchi T, Newton L, Burkhardt A, Mason S et al (2014) Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles. J Exp Bot 65(20):6003–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessmar-Raible K, Raible F, Arboleda E (2011) Another place, another timer: marine species and the rhythms of life. BioEssays 33(3):165–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Tharun S (2008) Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int Rev Cell Mol Biol 272:149–189

    Article  Google Scholar 

  • Tóth R, Kevei E, Hall A, Millar AJ (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127(4):1607–1616

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner A, Beales J, Faure S et al (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Env Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Waltenberger H, Schneid C, Grosch JO, Bareiss A et al (2001) Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy1 from Chlamydomonas reinhardtii. Mole Genet Genom 265(1):180–188

    Article  CAS  Google Scholar 

  • Wang X, Wu F, Xie Q, Wang H et al (2012) SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 24(8):3278–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gu Y, Gao H, Qiu L et al (2016) Molecular and geographic evolutionary support for the essential role of GIGANTEA in soybean domestication of flowering time. BMC Evol Biol 16(1):1–13. https://doi.org/10.1186/s12862-016-0653-9

    Article  CAS  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y et al (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188(2):395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Wang X, He Y, Xu H (2021) Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2; 1-mediated sodium homeostasis. The EMBO J 40(3):e105086

    Article  CAS  PubMed  Google Scholar 

  • Wenden B, Kozma-Bognár L, Edwards KD, Hall AJ et al (2011) Light inputs shape the Arabidopsis circadian system. The Plant J 66(3):480–491

    Article  CAS  PubMed  Google Scholar 

  • Weston E, Thorogood K, Vinti G, López-Juez E (2000) Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta 211(6):807–815

    Article  CAS  PubMed  Google Scholar 

  • Wulund L, Reddy AB (2015) A brief history of circadian time: The emergence of redox oscillations as a novel component of biological rhythms. Perspectives in Science 6:27–37

  • Xie MQ, Wang P, Liu X, Yuan L et al (2014) LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 26(7):2843–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yolcu S, Alavilli H, Ganesh P, Panigrahy M et al (2021) Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants 10(9):1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Wang B, Li H, Liu R et al (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. PNAS USA 109(44):18198–18203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Xie Q, Anderson RG et al (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9(6):e1003370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhao X, Li J, Cai H et al (2014) MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 26(12):4933–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wang Y, Shen J, Yin J et al (2018) OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice 11(1):1–15

    Article  Google Scholar 

  • Zhang B, Liu H, Qi F, Zhang Z et al (2019) Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice 12(1):1–13. https://doi.org/10.1186/s12284-12019-10314-x

    Article  Google Scholar 

  • Zhao J, Chen H, Ren D, Tang H et al (2015) Genetic interactions between diverged alleles of EARLY HEADING DATE 1 (Ehd1) and HEADING DATE 3A (Hd3a)/RICE FLOWERING LOCUS T1 (RFT 1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol 208(3):936–948

    Article  CAS  PubMed  Google Scholar 

  • Ziemienowicz A, Haasen D, Staiger D, Merkle T (2003) Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Mol Biol 53(1):201–212. https://doi.org/10.1023/B:PLAN.0000009288.46713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from Department of Science and Technology, India and National Institute of Science Education and Research is highly acknowledged.

Funding

This work is supported by Department of Science and Technology, WOS-A Women Scientist Fellowship, Grant Number: SR/LS-369/2018 awarded to MP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusmita Panigrahy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, A., Alavilli, H., Rath, J. et al. Variations in Circadian Clock Organization & Function: A Journey from Ancient to Recent. Planta 256, 91 (2022). https://doi.org/10.1007/s00425-022-04002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04002-1

Keywords

Navigation