Skip to main content
Log in

The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Seed dormancy and germination are two closely linked physiological traits that have great impacts on adaptation and survival of seed plants. Seed dormancy strengthen and germination potential are comprehensively influenced by a variety of internal factors and external environment cues. Environmental factors, such as water content, light condition, ambient temperature, and nitrogen availability, act as signal input to determine whether seeds keep in a dormant state or start to germinate. Light, temperature, and nitrogen availability are the most critical environmental factors that have profound impacts on seed dormancy and germination. However, the mechanisms underlying the regulation of seed dormancy and germination by environmental signals are still poorly understood. In this review, we summarize the current knowledge of signal transduction networks linking environmental stimulus to seed dormancy establishment, dormancy break and germination, underscoring the dominating roles of temperature, light, and nitric oxide. We review temperature, light, and nitric oxide signaling pathway separately as well as the integration of these signaling pathways with phytohormone abscisic acid (ABA) and gibberellins (GA) signaling pathway in the context of seed dormancy and germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  • Abeles FB. 1986. Role of ethylene in Lactuca sativa cv `Grand Rapids' seed germination. Plant Physiol 81:780–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O. 2015. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. NAT COMMUN 6:8669

    Article  CAS  PubMed  Google Scholar 

  • Alboresi A, Gestin C, Leydecker M-T, Bedu M, Meyer C, Truong H-N. 2005. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    Article  CAS  PubMed  Google Scholar 

  • Ali-Rachedi S, Bouinot D, Wagner M-H, Bonnet M, Sotta B, Grappin P, Jullien M. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Vries HB-d, Koornneef M. 2003. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arana MV, SÁNchez-Lamas M, Strasser B, Ibarra SE, CerdÁN PD, Botto JF, SÁNchez RA. 2014. Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis. Plant Cell Environ 37:2014–2023

    Article  CAS  PubMed  Google Scholar 

  • Arana MV, Tognacca RS, Estravis-Barcalá M, Sánchez RA, Botto JF. 2017. Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds. Plant Cell Environ 40:3113–3121

    Article  CAS  PubMed  Google Scholar 

  • Arc E, Chibani K, Grappin P, Jullien M, Godin B, Cueff G, Valot B, Balliau T, Job D, Rajjou L. 2012. Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release. Journal of Proteome Research 11:5418–5432

    Article  CAS  PubMed  Google Scholar 

  • Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ. 2008. Genetic variation for Lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148:926–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashikawa I, Abe F, Nakamura S. 2010. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Sci 179:536–542

    Article  CAS  PubMed  Google Scholar 

  • Ashikawa I, Mori M, Nakamura S, Abe F. 2014. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res 23:621–629

    Article  CAS  PubMed  Google Scholar 

  • Bae G, Choi G. 2008. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  CAS  PubMed  Google Scholar 

  • Ballaré CL, Scopel AL, Sánchez RA, Radosevich SR. 1992. Photomorphogenic processes in the agricultural environment. Photochem Photobiol 56:777–788

    Article  Google Scholar 

  • Basbouss-Serhal I, Leymarie J, Bailly C. 2016. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage. J Exp Bot 67:119–130

    Article  CAS  PubMed  Google Scholar 

  • Baskin CC, Baskin JM. 1998. Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier

  • Batlla D, Benech-Arnold RL. 2014. Weed seed germination and the light environment: implications for weed management. Weed Biology and Management 14:77–87

    Article  Google Scholar 

  • Beligni MV, Lamattina L. 2000. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, de Andrés MT, Reymond M. 2010. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci 107:4264–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M. 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci 103:17042–17047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentsink L, Koornneef M. 2008. Seed dormancy and germination. In: The Arabidopsis Book. BioOne, pp 1–18

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL. 2004. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Jones RL. 2006a. Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Reinöhl V, Jones RL. 2006b. Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD. 1997. Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Black M. 1994. Seeds: physiology of development and germination. Plenum Press, New York

    Book  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H. 2012. Seeds: physiology of development, germination and dormancy. Springer Science & Business Media

  • Bi C, Ma Y, Wang X-F, Zhang D-P. 2017. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis. Plant Mol Biol 95:425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccaccini A, Santopolo S, Capauto D, Lorrai R, Minutello E, Serino G, Costantino P, Vittorioso P. 2014. The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating the AtGA3ox1 gene. Mol Plant 7:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ. 2019. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell tpc.00892.02018

  • Buijs G, Vogelzang A, Nijveen H, Bentsink L. 2019. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field. The Plant journal : for cell and molecular biology https://doi.org/10.1111/tpj.14626

  • Burghardt LT, Edwards BR, Donohue K. 2016. Multiple paths to similar germination behavior in Arabidopsis thaliana. New Phytol 209:1301–1312

    Article  PubMed  Google Scholar 

  • Canales J, Moyano TC, Gutiérrez RA, Vidal EA. 2014. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J Exp Bot 65:5611–5618

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Hussain A, Cheng H, Peng J. 2005. Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113

    Article  CAS  PubMed  Google Scholar 

  • Casal JJ, Sánchez RA. 1998. Phytochromes and seed germination. Seed Sci Res 8:317–330

    Article  CAS  Google Scholar 

  • Castillo M-C, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J. 2015. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling 8:ra89–ra89

  • Chahtane H, Kim W, Lopez-Molina L. 2017. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot 68:857–869

    CAS  PubMed  Google Scholar 

  • Chen Z, Huang Y, Yang W, Chang G, Li P, Wei J, Yuan X, Huang J, Hu X. 2019. The hydrogen sulfide signal enhances seed germination tolerance to high temperatures by retaining nuclear COP1 for HY5 degradation. Plant science : an international journal of experimental plant biology 285:34–43

    Article  CAS  Google Scholar 

  • Chiang GCK, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe WJJ, Donohue K, De Meaux J. 2011. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol 20:3336–3349

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P. 2006. Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu RS, Nahal H, Provart NJ, Gazzarrini S. 2012. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology 12:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho J-N, Ryu J-Y, Jeong Y-M, Park J, Song J-J, Amasino Richard M, Noh B, Noh Y-S. 2012. Control of seed germination by light-induced histone arginine demethylation activity. Developmental Cell 22:736–748

    Article  CAS  PubMed  Google Scholar 

  • Clack T, Mathews S, Sharrock R. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol 25:413–427

    Article  CAS  PubMed  Google Scholar 

  • Contreras S, Bennett M, Tay D. 2009. Temperature during seed development affects weight, germinability and storability of lettuce seeds. Seed Sci Technol 37:398–412

    Article  Google Scholar 

  • Crawford NM. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S. 2016. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol 170:947–955

    Article  CAS  PubMed  Google Scholar 

  • Dechaine JM, Gardner G, Weinig C. 2009. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ 32:1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Dekkers BJW, He H, Hanson J, Willems LAJ, Jamar DCL, Cueff G, Rajjou L, Hilhorst HWM, Bentsink L. 2016. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J 85:451–465

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M. 2005. NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  CAS  PubMed  Google Scholar 

  • Di Giammartino Dafne C, Nishida K, Manley James L. 2011. Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolata J, Guo Y, Kołowerzo A, Smoliński D, Brzyżek G, Jarmołowski A, Świeżewski S. 2015. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis. Embo J 34:544–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J. 2005. Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution 59:740–757

    PubMed  Google Scholar 

  • Donohue K, Heschel MS, Butler CM, Barua D, Sharrock RA, Whitelam GC, Chiang GC. 2008. Diversification of phytochrome contributions to germination as a function of seed-maturation environment. New Phytol 177:367–379

    Article  PubMed  Google Scholar 

  • Donohue K, Heschel MS, Chiang GCK, Butler CM, Barua D. 2007. Phytochrome mediates germination responses to multiple seasonal cues. Plant Cell Environ 30:202–212

    Article  PubMed  Google Scholar 

  • Fedak H, Palusinska M, Krzyczmonik K, Brzezniak L, Yatusevich R, Pietras Z, Kaczanowski S, Swiezewski S. 2016. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci 113:E7846–E7855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenner M. 1991. The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84

    Article  Google Scholar 

  • Finch-Savage WE, Footitt S. 2017. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J Exp Bot 68:843–856

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R. 2013. Abscisic acid synthesis and response. The Arabidopsis Book e0166

  • Finkelstein R, Reeves W, Ariizumi T, Steber C. 2008. Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR. 1994. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Article  Google Scholar 

  • Finkelstein RR. 2010. The role of hormones during seed development and germination. In: Plant Hormones. Springer, pp 549–573

  • Footitt S, Clewes R, Feeney M, Finch-Savage WE, Frigerio L. 2019. Aquaporins influence seed dormancy and germination in response to stress. Plant Cell Environ 42:2325–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE. 2011. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci 108:20236–20241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Footitt S, Huang Z, Clay HA, Mead A, Finch-Savage WE. 2013. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant J 74:1003–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Footitt S, Müller K, Kermode AR, Finch-Savage WE. 2015. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Plant J 81:413–425

    Article  CAS  PubMed  Google Scholar 

  • Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P. 2010. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. Plant J 61:312–323

    Article  CAS  PubMed  Google Scholar 

  • Gallardo M, Delgado MdM, Sánchez-Calle IM, Matilla AJ. 1991. Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation in thermoinhibited Cicer arietinum L. Seeds. Plant Physiol 97:122–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giba Z, Grubišić D, Todorović S, Sajc L, Stojaković Đ, Konjević R. 1998. Effect of nitric oxide – releasing compounds on phytochrome – controlled germination of empress tree seeds. Plant Growth Regul 26:175–181

    Article  CAS  Google Scholar 

  • Gibbs Daniel J, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo Guillermina M, Berckhan S, Marín-de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel George W, Hamali B, Talloji P, Tomé Daniel FA, Coego A, Beynon J, Alabadí D, Bachmair A, León J, Gray Julie E, Theodoulou Frederica L, Holdsworth Michael J. 2014. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell 53:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gniazdowska A, Dobrzyńska U, Babańczyk T, Bogatek R. 2007. Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta 225:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Bogatek R. 2010. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Gonai T, Kawahara S, Tougou M, Satoh S, Hashiba T, Hirai N, Kawaide H, Kamiya Y, Yoshioka T. 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J Exp Bot 55:111–118

    Article  CAS  PubMed  Google Scholar 

  • Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Ignatz M, Sperber K, Voegele A, de Jong H, Urbanová T, Strnad M, Leubner-Metzger G. 2014. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci 111:E3571–E3580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber K, Nakabayashi K, Miatton E, LEUBNER-METZGER G, Soppe WJ. 2012. Molecular mechanisms of seed dormancy. Plant Cell Environ 35:1769–1786

    Article  CAS  PubMed  Google Scholar 

  • Graeber K, Voegele A, Büttner-Mainik A, Sperber K, Mummenhoff K, Leubner-Metzger G. 2013. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium DELAY OF GERMINATION1 genes. Plant Physiol 161:1903–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groot SPC, Karssen CM. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171:525–531

    Article  CAS  PubMed  Google Scholar 

  • Gu D, Chen C-Y, Zhao M, Zhao L, Duan X, Duan J, Wu K, Liu X. 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res 45:7137–7150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu D, Ji R, He C, Peng T, Zhang M, Duan J, Xiong C, Liu X. 2019. Arabidopsis Histone Methyltransferase SUVH5 Is a Positive Regulator of Light-Mediated Seed Germination. Front Plant Sci 10:

  • Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, Costantino P, Vittorioso P. 2002. Mutations in the Dof Zinc Finger Genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell 14:1253–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV. 2005. Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • He H, de Souza Vidigal D, Snoek LB, Schnabel S, Nijveen H, Hilhorst H, Bentsink L. 2014. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. J Exp Bot 65:6603–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig L, Stoddart WM, Dieterle M, Whitelam GC, Schäfer E. 2002. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol 128:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heschel MS, Butler CM, Chiang GCK, Wheeler A, Sharrock RA, Whitelam GC, Donohue K. 2008. New roles of phytochromes during seed germination. Int J Plant Sci 169:531–540

    Article  Google Scholar 

  • Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K. 2007. A new role for phytochromes in temperature-dependent germination. New Phytol 174:735–741

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ. 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Holman TJ, Jones PD, Russell L, Medhurst A, Úbeda Tomás S, Talloji P, Marquez J, Schmuths H, Tung S-A, Taylor I, Footitt S, Bachmair A, Theodoulou FL, Holdsworth MJ. 2009. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc Natl Acad Sci 106:4549–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo H, Wei S, Bradford KJ. 2016. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc Natl Acad Sci 113:E2199–E2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Suzuki H, Kim Y-C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M. 2007. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J 50:958–966

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Xu G, Jing Y, Tang W, Lin R. 2016. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. NAT COMMUN 7:12377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JCW, Schäfer E, Jaeger KE, Wigge PA. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  • Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165

    Article  CAS  PubMed  Google Scholar 

  • Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S. 2011. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH. 2004. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16:3033–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. 2008. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kang H, Park J, Kim W, Yoo J, Lee N, Kim J, Yoon T-y, Choi G. 2016. PIF1-interacting transcription factors and their binding sequence elements determine the in vivo targeting sites of PIF1. Plant Cell 28:1388–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Warpeha KM, Huber SC. 2019. The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. J Plant Physiol 241:153031–153031

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Lee Y, Park J, Lee N, Choi G. 2013. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol 54:555–572

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa NK, Lopez-Molina L. 2010. Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA signaling for the control of early post-germination growth in Arabidopsis thaliana. Plant Cell Physiol 51:239–251

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H. 2002. Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM. 1984. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plantarum 61:377–383

    Article  CAS  Google Scholar 

  • Kowalczyk J, Palusinska M, Wroblewska-Swiniarska A, Pietras Z, Szewc L, Dolata J, Jarmolowski A, Swiezewski S. 2017. Alternative polyadenylation of the sense transcript controls antisense transcription of DELAY OF GERMINATION 1 in Arabidopsis. Mol Plant 10:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Kozarewa I, Cantliffe DJ, Nagata RT, Stoffella PJ. 2006. High maturation temperature of Lettuce seeds during development increased ethylene production and germination at elevated temperatures. J Am Soc Hortic Sci 131:564–570

    Article  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. Embo J 23:1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KP, Piskurewicz U, Turečková V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L. 2012. Spatially and genetically distinct control of seed germination by phytochromes A and B. Gene Dev 26:1984–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KP, Piskurewicz U, Turečková V, Strnad M, Lopez-Molina L. 2010. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci 107:19108–19113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Park J, Kim K, Choi G. 2015. The transcriptional coregulator LEUNIG_HOMOLOG inhibits light-dependent seed germination in Arabidopsis. Plant Cell 27:2301–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J. 2002. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Gene Dev 16:646–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319

    Article  CAS  PubMed  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Quail PH. 2011. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  CAS  PubMed  Google Scholar 

  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M. 1996. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  PubMed  Google Scholar 

  • Leubner-Metzger G, Fründt C, Meins F. 1996. Effects of gibberellins, darkness and osmotica on endosperm rupture and class I β-1,3-glucanase induction in tobacco seed germination. Planta 199:282-288

    Article  CAS  Google Scholar 

  • Li X, Chen T, Li Y, Wang Z, Cao H, Chen F, Li Y, Soppe W, Li W, Liu Y. 2019. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION1 expression. Plant Cell tpc.00449.02018

  • Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G. 2013. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin P-C, Hwang S-G, Endo A, Okamoto M, Koshiba T, Cheng W-H. 2007. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143:745–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G. 2009. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Liu S-J, Xu H-H, Wang W-Q, Li N, Wang W-P, Møller IM, Song S-Q. 2015. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol Plantarum 154:142–161

    Article  CAS  Google Scholar 

  • Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. 2016. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nature Communications 7:12768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJJ. 2007. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J. 2009. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, León J. 2011. In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Marsolais F, Bykova NV, Igamberdiev AU. 2016. Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front Plant Sci 7:138–138

    PubMed  PubMed Central  Google Scholar 

  • Majee M, Kumar S, Kathare PK, Wu S, Gingerich D, Nayak NR, Salaita L, Dinkins R, Martin K, Goodin M, Dirk LMA, Lloyd TD, Zhu L, Chappell J, Hunt AG, Vierstra R, Huq E, Downie AB. 2018. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proc Natl Acad Sci 115:E4120–E4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel C, Blair LK, Donohue K. 2018. PHYD prevents secondary dormancy establishment of seeds exposed to high temperature and is associated with lower PIL5 accumulation. J Exp Bot 69:3157–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J-P, Kamiya Y, Nambara E, Truong H-N. 2009. The Arabidopsis abscisic acid catabolic Gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews S, Sharrock RA. 1997. Phytochrome gene diversity. Plant Cell Environ 20:666–671

    Article  CAS  Google Scholar 

  • Matilla AJ. 2000. Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    Article  CAS  Google Scholar 

  • Mendel RR. 2007. Biology of the molybdenum cofactor. J Exp Bot 58:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun Tp. 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818

    Article  CAS  PubMed  Google Scholar 

  • Molitor AM, Bu Z, Yu Y, Shen W-H. 2014. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 10:e1004091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monteiro HP, Arai RJ, Travassos LR. 2008. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxidants & Redox Signaling 10:843–890

    Article  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF. 2010. NO synthesis and signaling in plants – where do we stand? Physiol Plantarum 138:372–383

    Article  CAS  Google Scholar 

  • Mortensen SA, Grasser KD. 2014. The seed dormancy defect of Arabidopsis mutants lacking the transcript elongation factor TFIIS is caused by reduced expression of the DOG1 gene. Febs Lett 588:47–51

    Article  CAS  PubMed  Google Scholar 

  • Mortensen SA, Sønderkær M, Lynggaard C, Grasser M, Nielsen KL, Grasser KD. 2011. Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS. Febs Lett 585:1929–1933

    Article  CAS  PubMed  Google Scholar 

  • Müller K, Bouyer D, Schnittger A, Kermode AR. 2012. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS ONE 7:e51532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakabayashi K, Bartsch M, Ding J, Soppe WJJ. 2015. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLoS Genet 11:e1005737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe WJJ. 2012. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell 24:2826–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H. 2011. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Née G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe WJJ. 2017. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. NAT COMMUN 8:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder JI, Yates JR, Hirayama T, Yamazaki T. 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. NAT COMMUN 9:2132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD. 2010. Germination-still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. 2003. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. 2009. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Kim J, Park E, Kim J-I, Kang C, Choi G. 2004. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun T, Kamiya Y, Choi G. 2007. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W-I, Choi G. 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E. 2006. CYP707A1 and CYP707A2, which encode abscisic acid 8'-Hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osuna D, Prieto P, Aguilar M. 2015. Control of seed germination and plant development by carbon and nitrogen availability. Front Plant Sci 6:1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Paik I, Chen F, Ngoc Pham V, Zhu L, Kim J-I, Huq E. 2019. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. NAT COMMUN 10:4216–4216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papi M, Sabatini S, Altamura MM, Hennig L, Schäfer E, Costantino P, Vittorioso P. 2002. Inactivation of the phloem-specific Dof Zinc Finger Gene DAG1 affects response to light and integrity of the testa of Arabidopsis seeds. Plant Physiol 128:411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Lee N, Kim W, Lim S, Choi G. 2011. ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawłowski TA. 2007. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7:2246–2257

    Article  PubMed  CAS  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. 2008. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskurewicz U, Turečková V, Lacombe E, Lopez-Molina L. 2009. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. Embo J 28:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piterková J, Luhová L, Hofman J, Petřivalský M, Novák O, Turečková V, Fellner M. 2012. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Ann Bot-london 110:767–776

    Article  CAS  Google Scholar 

  • Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. 2009. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Quail PH. 2002. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Bio 3:85

    Article  CAS  Google Scholar 

  • Raz V, Bergervoet J, Koornneef M. 2001. Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    Article  CAS  PubMed  Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J. 1994. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds T, Thompson PA. 1971. Characterisation of the high temperature inhibition of germination of Lettuce (Lactuca sativa). Physiol Plantarum 24:544–547

    Article  CAS  Google Scholar 

  • Santopolo S, Boccaccini A, Lorrai R, Ruta V, Capauto D, Minutello E, Serino G, Costantino P, Vittorioso P. 2015. DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1. BMC Plant Biology 15:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB. 2006. Nitric oxide accelerates seed germination in warm-season grasses. Planta 223(6):1154–1164

  • Sawada Y, Aoki M, Nakaminami K, Mitsuhashi W, Tatematsu K, Kushiro T, Koshiba T, Kamiya Y, Inoue Y, Nambara E, Toyomasu T. 2008. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic Lettuce seeds. Plant Physiol 146:1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen S. 2010. S-Nitrosylation process acts as a regulatory switch for seed germination in wheat. American Journal of Plant Physiology 5:122–132

    Article  CAS  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun T-p, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E. 2006. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Nambara E, Choi G, Yamaguchi S. 2009. Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Moon J, Huq E. 2005. PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Zhong S, Mo X, Liu N, Nezames CD, Deng XW. 2013. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25:3770–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinomura T, Nagatani A, Chory J, Furuya M. 1994. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. 1996. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci 93:8129–8133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q. 2016a. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J 85:348–361

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Liu X-d, Xie Q, He Z-h. 2016b. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q. 2013. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:1

    Article  CAS  Google Scholar 

  • Song Q, Cheng S, Chen Z, Nie G, Xu F, Zhang J, Zhou M, Zhang W, Liao Y, Ye J. 2019. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis. BMC plant biology 19:199–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N. 2006. Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol 47:1081–1094

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H, Lin R. 2013. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163:857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y. 2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topham AT, Taylor RE, Yan D, Nambara E, Johnston IG, Bassel GW. 2017. Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in <em>Arabidopsis</em> seeds. Proc Natl Acad Sci 114:6629–6634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyomasu T, Yamane H, Murofushi N, Inoue Y. 1994. Effects of exogenously applied gibberellin and red light on the endogenous levels of abscisic acid in photoblastic Lettuce seeds. Plant Cell Physiol 35:127–129

    CAS  Google Scholar 

  • Vaistij FE, Barros-Galvão T, Cole AF, Gilday AD, He Z, Li Y, Harvey D, Larson TR, Graham IA. 2018. MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proc Natl Acad Sci 115:8442–8447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaistij FE, Gan Y, Penfield S, Gilday AD, Dave A, He Z, Josse E-M, Choi G, Halliday KJ, Graham IA. 2013. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc Natl Acad Sci 110:10866–10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Du Y, Hou Y-J, Zhao Y, Hsu C-C, Yuan F, Zhu X, Tao WA, Song C-P, Zhu J-K. 2015a. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci 112:613–618

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhu J-K, Lang Z. 2015b. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signal Behav 10:e1031939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W-Q, Song B-Y, Deng Z-J, Wang Y, Liu S-J, Møller IM, Song S-Q. 2015. Proteomic analysis of Lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation. Plant Physiol 167:1332–1350

  • Weitbrecht K, Müller K, Leubner-Metzger G. 2011. First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Schwechheimer C. 2007. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H. 2010. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Takeda-Kamiya N, Hanada A, Ogawa M, Kuwahara A, Seo M, Kamiya Y, Yamaguchi S. 2007. Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant Cell Physiol 48:555–561

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Chen Z. 2017. The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Rep 36:689–703

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y. 2014. AtEXP2 is involved in seed germination and abiotic stress tesponse in Arabidopsis. PLoS ONE 9:e85208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y, Bi Y-M, Provart N, Guttman D, Krapp A, Rothstein SJ, Nambara E. 2016. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. NAT COMMUN 7:13179–13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Chen Z, Huang Y, Chang G, Li P, Wei J, Yuan X, Huang J, Hu X. 2019. Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus. Plant science : an international journal of experimental plant biology 284:91–98

    Article  CAS  Google Scholar 

  • Yatusevich R, Fedak H, Ciesielski A, Krzyczmonik K, Kulik A, Dobrowolska G, Swiezewski S. 2017. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. Embo Rep 18:2186–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y. 2007. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Ml. 2015. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front Plant Sci 6:159

    PubMed  PubMed Central  Google Scholar 

  • Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJJ, Li Y, Liu Y. 2012. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193:605–616

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Bu Q, Xu X, Paik I, Huang X, Hoecker U, Deng XW, Huq E. 2015. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. NAT COMMUN 6:7245

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Authors thank the research grant (NTU-MSE-Facile Non-T) to Z.C. and NIE AcRF funding (RI 8/16 CZ) to support A.Y.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. conceived and initiated the work. A.Y. and Z.C. wrote and revised the manuscript.

Corresponding author

Correspondence to Zhong Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, A., Chen, Z. The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate. Bot. Rev. 86, 39–75 (2020). https://doi.org/10.1007/s12229-020-09220-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-020-09220-4

Keywords

Navigation