Skip to main content
Log in

N6-Methyladenosine dynamic changes and differential methylation in wheat grain development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

More methylation changes occur in late interval than in early interval of wheat seed development with protein and the starch synthesis-related pathway enriched in the later stages.

Abstract

Wheat seed development is a critical process to determining wheat yield and quality, which is controlled by genetics, epigenetics and environments. The N6-methyladenosine (m6A) modification is a reversible and dynamic process and plays regulatory role in plant development and stress responses. To better understand the role of m6A in wheat grain development, we characterized the m6A modification at 10 day post-anthesis (DPA), 20 DPA and 30 DPA in wheat grain development. m6A-seq identified 30,615, 30,326, 27,676 high confidence m6A peaks from the 10DPA, 20DPA, and 30DPA, respectively, and enriched at 3'UTR. There were 29,964, 29,542 and 26,834 unique peaks identified in AN0942_10d, AN0942_20d and AN0942_30d. One hundred and forty-two genes were methylated by m6A throughout seed development, 940 genes methylated in early grain development (AN0942_20d vs AN0942_10d), 1542 genes in late grain development (AN0942_30d vs AN0942_20d), and 1190 genes between early and late development stage (AN0942_30d vs AN0942_10d). KEGG enrichment analysis found that protein-related pathways and the starch synthesis-related pathway were significantly enriched in the later stages of seed development. Our results provide novel knowledge on m6A dynamic changes and its roles in wheat grain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The supplementary data can be found online BioProject: PRJNA770512 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA770512?reviewer=2h3bbvs90976rk4vj0q1mfmkk1).

Abbreviations

DPA:

Day post-anthesis

m6A:

N6-Methyladenosine

UTRs:

Untranslated regions

References

  • Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level–the DESeq package. European Molecular Biology Laboratory (EMBL), Heidelberg

    Google Scholar 

  • Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  CAS  Google Scholar 

  • Barneix AJ (2007) Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol 164:581–590

    Article  CAS  PubMed  Google Scholar 

  • Bodi Z, Zhong S, Mehra S, Song J, Graham N, Li H, May S, Fray RG (2012) Adenosine methylation in Arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects. Front Plant Sci 3:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m(6)A RNA methylomes revealed by m(6)A-seq. Nature 485:201–284

    Article  CAS  PubMed  Google Scholar 

  • Drozdenyuk AP, Sulimova GE, Vanyushin BI (1976) Changes in base composition and molecular population of wheat DNA on germination. Mol Biol (moscow) 10:1378–1386

    Google Scholar 

  • Du X, Fang T, Liu Y, Wang M, Zang M, Huang L, Zhen S, Zhang J, Shi Z, Wang G, Fu J, Liu Y (2020) Global profiling of N-6-methyladenosine methylation in maize callus induction. Plant Genome 13:e20018

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA (2013) FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nature Commun 4:1–8

    CAS  Google Scholar 

  • Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155:793–806

    Article  CAS  PubMed  Google Scholar 

  • Gardiner LJ, Quinton-Tulloch M, Olohan L, Price J, Hall N, Hall A (2015) A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol 16:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan JT, Garcia DF, Zhou Y, Appels R, Li A, Mao L (2020) The battle to sequence the bread wheat genome: a tale of the three kingdoms. Genomics Proteomics Bioinform 18:221–229

    Article  Google Scholar 

  • Guo G, Lv D, Yan X, Subburaj S, Ge P, Li X, Hu Y, Yan Y (2012) Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biol 12:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8:R24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou G, Du C, Gao H, Liu S, Sun W, Lu H, Kang J, Xie Y, Ma D, Wang C (2020) Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels. BMC Plant Biol 20:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H, Wu ZY, Lu J, Chang C, Sun GL, Ma CX (2016) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breeding 36:25

    Article  CAS  Google Scholar 

  • Jaiswal V, Gahlaut V, Mathur S, Agarwal P, Khandelwal MK, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2015) Identification of novel SNP in promoter sequence of TaGW2–6A associated with grain weight and other agronomic traits in wheat (Triticum aestivum L.). PLoS ONE 10:e0129400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chem Biol 7:885–887

    Article  CAS  Google Scholar 

  • Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ (2018) Nuclear m(6)A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14:e1007412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennedy TD, Lane BG (1979) Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5’-terminal dinucleotide sequences in bulk poly(AR)-rich RNA from imbibing wheat embryos. Can J Biochem 57:927–931

    Article  CAS  PubMed  Google Scholar 

  • Kierzek E, Kierzek R (2003) The synthesis of oligoribonucleotides containing N-6-alkyladenosines and 2-methylthio-N-6-alkyladenosines via post-synthetic modification of precursor oligomers. Nucleic Acids Res 31:4461–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Paggi JM, Park C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP (2014) Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics 15:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M, Roignant JY (2016) m(6)A modulates neuronal functions and sex determination in Drosophila. Nature 540:242–247

    Article  CAS  PubMed  Google Scholar 

  • Lence T, Paolantoni C, Worpenberg L, Roignant JY (2019) Mechanistic insights into m6A RNA enzymes. Biochim Biophys Acta 1862:222–229

    Article  CAS  Google Scholar 

  • Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X (2019a) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Pan Z, Liu J, Deng G, Long H, Zhang H, Liang J, Zeng X, Tang Y, Tashi N, Yu M (2019b) A mutation in Waxy gene affects amylose content, starch granules and kernel characteristics of barley (Hordeum vulgare). Plant Breeding 138:513–523

    Article  CAS  Google Scholar 

  • Liao HL, Ma TC, Chiu YL, Chen JT, Chang YS (2008) Factors influencing the purchasing behavior of TCM outpatients in Taiwan. J Altern Complement Med 14:741–748

    Article  PubMed  Google Scholar 

  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X (2014) A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chem Biol 10:93–95

    Article  CAS  Google Scholar 

  • Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T (2017) N-6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Wang J, Hou X (2020a) Transcriptome-wide N-6-methyladenosine (m(6)A) methylome profiling of heat stress in Pak-choi (Brassica rapa ssp. chinensis). Plants-Basel 9:1080

    Article  CAS  PubMed Central  Google Scholar 

  • Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J, Fan J, Yi C (2020b) Landscape and regulation of m(6)A and m(6)Am methylome across human and mouse tissues. Mol Cell 77:426–440

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Chang C, Zhang HP, Wang SX, Sun G, Xiao SH, Ma CX (2015) Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS ONE 10:e0144765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, Lu Z, Liu J, Chen K, Jia G, Bergelson J, He C (2014) Unique features of the m(6)A methylome in Arabidopsis thaliana. Nature Commun 5:5630

    Article  CAS  Google Scholar 

  • Ma M, Wang Q, Li Z, Cheng H, Li Z, Liu X, Song W, Appels R, Zhao H (2015) Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J 83:312–325

    Article  CAS  PubMed  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genom 270:371–377

    Article  CAS  Google Scholar 

  • Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi MF, Martre P, Branlard G (2010) Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 10:2901–2910

    Article  CAS  PubMed  Google Scholar 

  • Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall A, Barton GJ, Simpson GG (2019) Nanopore direct RNA sequencing maps an Arabidopsis N6-methyladenosine epitranscriptome. BioRxiv. https://doi.org/10.1101/706002

  • Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontier D, Picart C, El Baidouri M, Roudier F, Xu T, Lahmy S, Llauro C, Azevedo J, Laudie M, Attina A, Hirtz C, Carpentier MC, Shen L, Lagrange T (2019) The m(6)A pathway protects the transcriptome integrity by restricting RNA chimera formation in plants. Life Sci Alliance 2:e201900393

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangan P, Furtado A, Henry RJ (2017) The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat. BMC Genomics 18:766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reichel M, Koester T, Staiger D (2019) Marking RNA: m(6)A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 11:899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice M, Mazzeo B (2012) On the superiority of the negative binomial test over the binomial test for estimating the bit error rate. IEEE Trans Commun 60:2971–2981

    Article  Google Scholar 

  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgo A, Gergely S (2012) Analysis of wheat grain development using NIR spectroscopy. J Cereal Sci 56:31–38

    Article  CAS  Google Scholar 

  • Scarrow M, Chen N, Sun G (2020) Insights into the N-6-methyladenosine mechanism and its functionality: progress and questions. Crit Rev Biotechnol 40:639–652

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Stark R, Brown G (2011) DiffBind: differential binding analysis of ChIP-Seq peak data. R package version 100. http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf

  • Sun X, Zhang S, Li X, Zhang X, Wang X, Wang L, Li Z, Wang X (2020) A MADS-box transcription factor from grapevine, VvMADS45, influences seed development. Plant Cell Tissue Organ Cult 141:105–118

    Article  CAS  Google Scholar 

  • Teng B, Zeng R, Wang Y, Liu Z, Zhang Z, Zhu H, Ding X, Li W, Zhang G (2012) Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breeding 30:583–595

    Article  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  CAS  PubMed  Google Scholar 

  • Theler D, Dominguez C, Blatter M, Boudet J, Allain FHT (2014) Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res 42:13911–13919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Poole RL, Huttly AK, Underwood CT, Feency K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RA (2008) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan Y, Tang K, Zhang D, Xie S, Zhu X, Wang Z, Lang Z (2015) Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana. Genome Biol 16:272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang CX, Sun LX, Liu MY (1999) Double-wavelength spectrophotometry determination of amylose and amylopectin in many grain and bean of Hebei Province. Chin J Spectroscopy Lab 16:259–261

    CAS  Google Scholar 

  • Wang X, Zhu L, Chen J, Wang Y (2015) mRNA m(6)A methylation downregulates adipogenesis in porcine adipocytes. Biochem Biophys Res Comm 459:201–207

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C (2016) Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534:575–578

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yuan J, Ma Y, Jiao W, Ye W, Yang DL, Yi C, Chen ZJ (2018) Rice interploidy crosses disrupt epigenetic regulation, gene expression, and seed development. Mol Plant 11:300–314

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Li Z, Zhang Y, Zhang Y, Xie Y, Ye L, Zhuang Y, Lin K, Zhao F, Guo J, Teng W, Zhang W, Tong Y, Xue Y, Zhang Y (2021) An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33:865–881

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei LH, Song P, Wang Y, Lu Z, Tang Q, Yu Q, Xiao Y, Zhang X, Duan HC, Jia G (2018) The m(6)A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell 30:968–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Yamamoto T, Segami S, Horikawa M, Chaya G, Kitano H, Iwasaki Y, Miura K (2020) gw2 mutation increases grain width and culm thickness in rice (Oryza saliva L.). Breeding Sci 70:456–461

    Article  CAS  Google Scholar 

  • Yang X, Wu F, Lin X, Du X, Chong K, Gramzow L, Schilling S, Becker A, Theissen G, Meng Z (2012) Live and let die—The B-sister MADS-Box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS ONE 7:e51435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GC, Wang LG, He QY (2015a) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Yu H, Shao S, Zhang J, Zhou L, Zheng Y, Xiong F, Wang Z (2015b) Structural development of conducting cell and its functions in wheat caryopsis. Bras J Bot 38:401–409

    Article  Google Scholar 

  • Yu Y, Zhu D, Ma C, Cao H, Wang Y, Xu Y, Zhang W, Yan Y (2016) Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. Crop J 4:92–106

    Article  Google Scholar 

  • Yu Y, Sun FY, Chen N, Sun GL, Wang CY, Wu DX (2021) MiR396 regulatory network and its expression during grain development in wheat. Protoplasma 258:103–113

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhang YC, Liao JY, Yu Y, Zhou YF, Feng YZ, Yang YW, Lei MQ, Bai M, Wu H, Chen YQ (2019) The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet 15:e1008120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TY, Wang ZQ, Hu HC, Chen ZQ, Liu P, Gao SQ, Zhang F, He L, Jing P, Xu MZ, Chen JP, Yang J (2021) Transcriptiome-wide N6-methyladenosine (m6A) profiling of susceptible and resistant wheat varieties reveals the involvement of variety-specific m6A modification involved in virus-host interaction pathways. Front Microbiol 12:1302

    Google Scholar 

  • Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Danielsen JMR, Wang XJ, Yang YG (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH (2013a) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang YG, He C (2013b) Sprouts of RNA epigenetics: the discovery of mammalian RNA demethylases. RNA Biol 10:915–918

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Tian S, Qin G (2019) RNA methylomes reveal the m(6)A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol 20:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was financially supported by a Research Foundation for Talented Scholars from Anhui Agricultural University and the introduced leading talent research team for Universities in Anhui Province, and a graduate Innovation Fund of Anhui Agricultural University (2021yjs-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sihong Ye, Dexiang Wu or Genlou Sun.

Ethics declarations

Conflict of interest

This manuscript or substantial parts of it, submitted to the journal has not be under consideration by any other journal. No material submitted as part of a manuscript infringes existing copyrights, or the rights of a third party. All authors have approved the manuscript. The authors have declared that no conflict interests exist.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yu, Y., Chen, X. et al. N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. Planta 255, 125 (2022). https://doi.org/10.1007/s00425-022-03893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03893-4

Keywords

Navigation