Skip to main content
Log in

A MADS-box transcription factor from grapevine, VvMADS45, influences seed development

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Grape is one of the most economically important fruits worldwide, and seedless fruit is a main target in grape breeding. The MADS-box genes encode a large family of transcription factors in higher plants, and serve various developmental roles including flower, fruit and seed development. However, little is known about function of MADS-box genes in grapevine, especially related to seed development. Here, we characterized a role for the grapevine MADS-box gene, VvMADS45, in seed development. Heterologous expression of VvMADS45 (VvMADS45-OE) in tomato resulted in larger flowers, fruit and seeds. In contrast, disruption of a tomato homolog of VvMADS45 (SlAGL104-KO) resulted in smaller flowers, fruit and seeds. In addition, both VvMADS45-OE and SlAGL104-KO lines produced fewer seeds than control. The fraction of pollen grains that appeared abnormal or failed to rehydrate was greater in VvMADS45-OE lines than in non-transgenic control plants, while relatively few abnormal pollen grains were formed in SlAGL104-KO lines. Expression of several genes related to flower, fruit and seed development was altered in both VvMADS45-OE and SlAGL104-KO lines. These results revealed that VvMADS45 participates in flower, fruit and seed development, especially seed development, which may provide new insight into the genetic basis of seedlessness in grapes.

Key Message

Heterologous expression of grapevine VvMADS45 in tomato increases the size of flowers, fruit and seeds, and decreases seed number, while disruption of the tomato homolog of this gene, SlAGL104, decreases the size of the flowers, fruit, and seeds, as well as seed number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149(4):1713–1723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahaji A, Almagro G, Ezquer I, Gámez-Arcas S, Sánchez-López ÁM, Muñoz FJ, Barrio RJ, Sampedro MC, De Diego N, Spíchal L, Doležal K, Tarkowská D, Caporali E, Mendes MA, Baroja-Fernández E, Pozueta-Romero J (2018) Plastidial phosphoglucose isomerase is an important determinant of seed yield through its involvement in gibberellin-mediated reproductive development and storage reserve biosynthesis in Arabidopsis. Plant Cell 30:2082–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balanza V, Martinez-Fernandez I, Sato S, Yanofsky MF, Kaufmann K, Angenent GC, Bemer M, Ferrandiz C (2018) Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat Commun 9(1):565

    PubMed  PubMed Central  Google Scholar 

  • Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D (2014) Jasmonic acid regulates spikelet development in rice. Nat Commun 5:3476

    PubMed  Google Scholar 

  • Chen H, Niklas KJ, Yang D, Sun S (2009) The effect of twig architecture and seed number on seed size variation in subtropical woody species. New Phytol 183(4):1212–1221

    PubMed  Google Scholar 

  • Cheng CX, Jiao C, Singer SD, Gao M, Xu XZ, Zhou YM, Li Z, Fei Z, Wang YJ, Wang XP (2015) Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 16:128

    Google Scholar 

  • Chi Y, Wang T, Xu G, Yang H, Zeng X, Shen Y, Yu D, Huang F (2017) GmAGL1, a MADS-box gene from soybean, is involved in floral organ identity and fruit dehiscence. Front Plant Sci 8:175

    PubMed  PubMed Central  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    CAS  PubMed  Google Scholar 

  • Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61(5):767–781

    CAS  PubMed  Google Scholar 

  • Czerednik A, Busscher M, Bielen BA, Wolters-Arts M, de Maagd RA, Angenent GC (2012) Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. J Exp Bot 63(7):2605–2617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(1):S84–S97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez L, Chaib J, Martinez-Zapater JM, Thomas MR, Torregrosa L (2013) Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J 73(6):918–928

    CAS  PubMed  Google Scholar 

  • Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153(2):728–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T (2015) Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168(3):1036–1048

    PubMed  PubMed Central  Google Scholar 

  • Gimenez E, Castaneda L, Pineda B, Pan IL, Moreno V, Angosto T, Lozano R (2016) TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Mol Biol 91(4–5):513–531

    CAS  PubMed  Google Scholar 

  • Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA (2016) Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiol 172:2403–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA (2018) Gibberellins negatively modulate ovule number in plants. Development 145:163865

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45(3):115–120

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Yang WC (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173(1):112–121

    CAS  PubMed  Google Scholar 

  • Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119(1):37–42

    PubMed  Google Scholar 

  • Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D (2014) A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biol 14:89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Routaboul JM, Liu M, Deng W, Maza E, Mila I, Hu G, Zouine M, Frasse P, Vrebalov JT, Giovannoni JJ, Li Z, van der Rest B, Bouzayen M (2017) Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits. J Exp Bot 68(17):4869–4884

    CAS  PubMed  Google Scholar 

  • Huang L, Yin X, Sun X, Yang J, Rahman M, Chen Z, Wang X (2018) Expression of a grape VqSTS36-increased resistance to powdery mildew and osmotic stress in Arabidopsis but enhanced susceptibility to Botrytis cinerea in Arabidopsis and tomato. Int J Mol Sci 19(10):2985

    PubMed Central  Google Scholar 

  • Ishiai S, Nakajima Y, Enoki S, Suzuki S (2016) Grape SISTER OF RAMOSA3 is a negative regulator of pedicel development of grape inflorescence. Plant Cell Tissue Org Cult 124:217–225

    CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102(8):3117–3122

    CAS  PubMed  Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198

    CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196(2):535–547

    CAS  PubMed  Google Scholar 

  • Ledbetter CA, Ramming DW (1989) Seedlessness in grapes. Hortic Rev 11:159–184

    Google Scholar 

  • Li J, Wang X, Wang X, Wang Y (2015) Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue Org Cult 120:861–880

    Google Scholar 

  • Li Z, Liu G, Zhang J, Zhang S, Bao M (2017) Functional analysis of the promoters of B-class MADS-box genes in London plane tree and their application in genetic engineering of sterility. Plant Cell Tissue Org Cult 130:279–288

    CAS  Google Scholar 

  • Li XB, Shi SY, Tao QD, Tao YJ, Miao J, Peng XR, LiC YZF, Zhou Y, Liang GH (2019a) OsGASR9 positively regulates grain size and yield in rice (Oryza sativa). Plant Sci 286:17–27

    CAS  PubMed  Google Scholar 

  • Li YD, Zhang SL, Dong RZ, Wang L, Yao J, van Nocker S, Wang XP (2019b) The grapevine homeobox gene VvHB58 influences seed and fruit development through multiple hormonal signaling pathways. BMC Plant Biol 19:523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lu S, Lai J, Song W, Schnable PS, Tian F (2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol 221(4):2335–2347

    CAS  PubMed  Google Scholar 

  • Liu J, Tang X, Gao L, Gao Y, Li Y, Huang S, Sun X, Miao M, Zeng H, Tian X, Niu X, Zheng L, Giovannoni J, Xiao F, Liu Y (2012) A role of tomato UV-damaged DNA binding protein 1 (DDB1) in organ size control via an epigenetic manner. PLoS ONE 7(8):e42621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theissen G, Meng Z (2013) Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25(4):1288–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang J, Wang J, Zhang J, Miao H, Jia C, Wang Z, Xu B, Jin Z (2018) MuMADS1 and MaOFP1 regulate fruit quality in a tomato ovate mutant. Plant Biotech J 16(5):989–1001

    CAS  Google Scholar 

  • Ma H, DePamphilis C (2000) The ABCs of floral evolution. Cell 101(1):5–8

    CAS  PubMed  Google Scholar 

  • Ma X, Liu YG (2016) CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr Protoc Mol Biol 115:31–36

    PubMed  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    CAS  PubMed  Google Scholar 

  • Malabarba J, Buffon V, Mariath J, Gaeta ML, Dornelas MC, Margis-Pinheiro M, Pasquali G, Revers LF (2017) The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. J Exp Bot 68(7):1493–1506

    CAS  PubMed  Google Scholar 

  • Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G (2015) Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol 16:31

    PubMed  PubMed Central  Google Scholar 

  • Matias-Hernandez L, Battaglia R, Galbiati F, Rubes M, Eichenberger C, Grossniklaus U, Kater MM, Colombo L (2010) VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell 22(6):1702–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mejia N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono ML, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4(6):533–539

    CAS  PubMed  Google Scholar 

  • Moriguchi R, Ohata K, Kanahama K, Takahashi H, Nishiyama M, Kanayama Y (2011) Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. J Plant Physiol 168(16):1927–1933

    CAS  PubMed  Google Scholar 

  • Ocarez N, Mejia N (2016) Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Rep 35(1):239–254

    CAS  PubMed  Google Scholar 

  • Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102(8):3123–3128

    CAS  PubMed  Google Scholar 

  • Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22(4):277–289

    PubMed  PubMed Central  Google Scholar 

  • Palumbo F, Vannozzi A, Magon G, Lucchin M, Barcaccia G (2019) Genomics of flower identity in grapevine (Vitis vinifera L.). Front Plant Sci 10:316

    PubMed  PubMed Central  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85–88

    CAS  PubMed  Google Scholar 

  • Powell AE, Lenhard M (2012) Control of organ size in plants. Curr Biol 22(9):R360–R367

    CAS  PubMed  Google Scholar 

  • Pramono AA, Palupi ER, Siregar IZ, Kusmana C (2016) Characteristics of surian flower, fruit and seed productions (Toona sinensis (A. Juss.) M. Roem.)) in Sumedang. West Java. Trop Life Sci Res 27(1):77–91

    PubMed  Google Scholar 

  • Prasad K, Zhang X, Tobon E, Ambrose BA (2010) The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J 62(2):203–214

    CAS  PubMed  Google Scholar 

  • Ramming DW (1990) The use of embryo culture in fruit breeding. Hortic Sci 25(4):393–398

    Google Scholar 

  • Royo C, Torres-Perez R, Mauri N, Diestro N, Cabezas JA, Marchal C, Lacombe T, Ibanez J, Tornel M, Carreno J, Martinez-Zapater JM, Carbonell-Bejerano P (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol 177(3):1234–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao SQ, Li BY, Zhang ZT, Zhou Y, Jiang J, Li XB (2010) Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. J Genet Genomics 37(12):805–816

    CAS  PubMed  Google Scholar 

  • Su LY, Audran C, Bouzayen M, Roustan JP, Chervin C (2015) The Aux/IAA, Sl-IAA17 regulates quality parameters over tomato fruit development. Plant Signal Behav 10(11):e1071001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6(6):544–553

    CAS  PubMed  Google Scholar 

  • Suzuki H, Oshita E, Fujimori N, Nakajima Y, Kawagoe Y, Suzuki S (2015) Grape expansins, VvEXPA14 and VvEXPA18 promote cell expansion in transgenic Arabidopsis plant. Plant Cell Tissue Org Cult 120:1077–1085

    CAS  Google Scholar 

  • Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8(11):R249

    PubMed  PubMed Central  Google Scholar 

  • Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21(10):3041–3062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yin X, Cheng C, Wang H, Guo R, Xu X, Zhao J, Zheng Y, Wang X (2015) Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol Genet Genomics 290(3):825–846

    CAS  PubMed  Google Scholar 

  • Wang L, Hu X, Jiao C, Li Z, Fei Z, Yan X, Liu C, Wang Y, Wang X (2016) Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics 17(1):898

    PubMed  PubMed Central  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78(2):203–209

    CAS  PubMed  Google Scholar 

  • Wilhelmi LK, Preuss D (1997) Blazing new trails (pollen tube guidance in flowering plants). Plant Physiol 113(2):307–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Chen Y, Chen L, Fu X, Zhao K, Zhang J, Sun C (2018) B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f. Physiol Plant 162(3):353–369

    CAS  PubMed  Google Scholar 

  • Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu YG (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10(9):1246–1249

    CAS  PubMed  Google Scholar 

  • Xu W, Bobet S, Le Gourrierec J, Grain D, De Vos D, Berger A, Salsac F, Kelemen Z, Boucherez J, Rolland A, Mouille G, Routaboul JM, Lepiniec L, Dubos C (2017) TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. J Exp Bot 68(11):2859–2870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148(3):1368–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhao Y, Juntheikki I, Mouhu K, Broholm SK, Rijpkema AS, Kins L, Lan T, Albert VA, Teeri TH, Elomaa P (2017) Dissecting functions of SEPALLATA-like MADS box genes in patterning of the pseudanthial inflorescence of Gerbera hybrida. New Phytol 216(3):939–954

    CAS  PubMed  Google Scholar 

  • Zhang H, Xu H, Feng M, Zhu Y (2018a) Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotech J 16(1):18–26

    CAS  Google Scholar 

  • Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G (2018b) Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Sci 272:75–87

    CAS  PubMed  Google Scholar 

  • Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G (2019) An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. J Exp Bot 70(3):909–924

    CAS  PubMed  Google Scholar 

  • Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li XS, Weng Y, Zhang X (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31(6):1289–1307

    CAS  PubMed  Google Scholar 

  • Zheng Q, Perry SE (2014) Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18. Plant Physiol 164(3):1365–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Gu B, Li P, Shu X, Zhang X, Zhang J (2020) New cold-resistant, seedless grapes developed using embryo rescue and marker-assisted selection. Plant Cell Tissue Org Cult. https://doi.org/10.1007/s11240-019-01751-y

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yaoguang Liu of South China Agricultural University for providing the pYLCRISPR/Cas9 system. This work was supported by the National Natural Science Foundation of China (U1603234), as well as the Program for Innovative Research Team of Grape Germplasm Resources and Breeding (2013KCT-25).

Author information

Authors and Affiliations

Authors

Contributions

XPW and XMS designed experiments. XMS performed experiments. SLZ, XML, XHW, XMZ and ZL assisted with experiments. XMS and XPW wrote the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Xiping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ming-Tsair Chan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, S., Li, X. et al. A MADS-box transcription factor from grapevine, VvMADS45, influences seed development. Plant Cell Tiss Organ Cult 141, 105–118 (2020). https://doi.org/10.1007/s11240-020-01771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01771-z

Keywords

Navigation