Ågren J, Schemske DW (2012) Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol 194:1112–1122. https://doi.org/10.1111/j.1469-8137.2012.04112.x
Article
PubMed
Google Scholar
Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW (2013) Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:21077–21082. https://doi.org/10.1073/pnas.1316773110
CAS
Article
PubMed Central
Google Scholar
Anderson JT, Panetta AM, Mitchell-Olds T (2012) Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change. Plant Physiol 160:1728–1740. https://doi.org/10.1104/pp.112.206219
CAS
Article
PubMed
PubMed Central
Google Scholar
Brachi B, Aimé C, Glorieux C, Cuguen J, Roux F (2012) Adaptive value of phenological traits in stressful environments: predictions based on seed production and laboratory natural selection. PLoS ONE 7:e32069. https://doi.org/10.1371/journal.pone.0032069
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen C, Huang W, Hou K, Wu W (2019) Bolting, an important process in plant development, two types in plants. J Plant Biol 62:161–169. https://doi.org/10.1007/s12374-018-0408-9
CAS
Article
Google Scholar
Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248. https://doi.org/10.1073/pnas.0406069101
CAS
Article
PubMed
PubMed Central
Google Scholar
Cvetkovic J, Müller K, Baier M (2017) The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Sci Rep 7:44055. https://doi.org/10.1038/srep44055
Article
PubMed
PubMed Central
Google Scholar
de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116:249–254. https://doi.org/10.1038/hdy.2015.93
Article
PubMed
Google Scholar
Exposito-Alonso M, Burbano HA, Bossdorf O, Nielsen R, Weigel D (2019) Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573:126–129. https://doi.org/10.1038/s41586-019-1520-9
CAS
Article
PubMed
Google Scholar
Ferrero-Serrano Á, Assmann SM (2019) Phenotypic and genome-wide association with the local environment of Arabidopsis. Nature Ecol Evol 3:274–285. https://doi.org/10.1038/s41559-018-0754-5
Article
Google Scholar
Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334:86–89. https://doi.org/10.1126/science.1209271
CAS
Article
PubMed
Google Scholar
Frachon L, Bartoli C, Carrère S, Bouchez O, Chaubet A, Gautier M, Roby D, Roux F (2018) A genomic map of climate adaptation in Arabidopsis thaliana at a micro-geographic scale. Front Plant Sci 9:967. https://doi.org/10.3389/fpls.2018.00967
Article
PubMed
PubMed Central
Google Scholar
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865. https://doi.org/10.1104/pp.124.4.1854
CAS
Article
PubMed
PubMed Central
Google Scholar
Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86. https://doi.org/10.1126/science.1209244
CAS
Article
PubMed
Google Scholar
Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26. https://doi.org/10.1371/journal.pgen.0010026
CAS
Article
PubMed
PubMed Central
Google Scholar
Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001
Article
Google Scholar
Heidel AJ, Clarke JD, Antonovics J, Dong X (2004) Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168:2197–2206. https://doi.org/10.1534/genetics.104.032193
CAS
Article
PubMed
PubMed Central
Google Scholar
Herms DA, Mattson,WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335. http://www.jstor.org/stable/2830650
Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, Rolff J, Romeis T, Schmülling T, Steppuhn A, van Dongen J, Whitcomb SJ, Wurst S, Zuther E, Kopka J (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91:1118–1133. https://doi.org/10.1111/brv.12215
Article
PubMed
Google Scholar
Hincha DK, Espinoza C, Zuther E (2012) Transcriptomic and metabolomic approaches to the analysis of plant freezing tolerance and cold acclimation. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley-VHC, pp 255–287. https://doi.org/10.1002/9783527632930.ch11
Chapter
Google Scholar
Holliday JA, Ritland K, Aitken SN (2010) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol 188:501–514. https://doi.org/10.1111/j.1469-8137.2010.03380.x
Article
PubMed
Google Scholar
Hu J, Lei L, de Meaux J (2017) Temporal fitness fluctuations in experimental Arabidopsis thaliana populations. PLoS ONE 12:e0178990. https://doi.org/10.1371/journal.pone.0178990
CAS
Article
PubMed
PubMed Central
Google Scholar
IPCC (2014) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge
Google Scholar
Jackson MW, Stinchcombe JR, Korves TM, Schmitt J (2004) Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Mol Ecol 13:3609–3615. https://doi.org/10.1111/j.1365-294X.2004.02343.x
CAS
Article
PubMed
Google Scholar
Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M (2016) Natural variation of cold deacclimation correlates with variation of cold-acclimation of the plastid antioxidant system in Arabidopsis thaliana accessions. Front Plant Sci 7:305. https://doi.org/10.3389/fpls.2016.00305
Article
PubMed
PubMed Central
Google Scholar
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 17:287–291. https://doi.org/10.1038/7036
CAS
Article
Google Scholar
Köhl KI, Laitinen RAE (2015) From the greenhouse to the real world—Arabidopsis field trials and applications. In: Laitinen RAE (ed) Molecular mechanisms in plant adaptation. Wiley-Blackwell, pp 217–235. https://doi.org/10.1002/9781118860526
Chapter
Google Scholar
Kovi MR, Ergon Å, Rognli OA (2016) Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. Curr Opin Plant Biol 33:140–146. https://doi.org/10.1016/j.pbi.2016.07.006
CAS
Article
PubMed
Google Scholar
Kreyling J, Schmid S, Aas G (2015) Cold tolerance of tree species is related to the climate of their native ranges. J Biogeography 42:156–166. https://doi.org/10.1111/jbi.12411
Article
Google Scholar
Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21:5512–5529. https://doi.org/10.1111/j.1365-294X.2012.05709.x
Article
PubMed
Google Scholar
Lee J-T, Prasad V, Yang P-T, Wu J-F, David Ho T-H, Charng Y-Y, Chan M-T (2003) Expression of Arabdopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190. https://doi.org/10.1046/j.1365-3040.2003.01048.x
CAS
Article
Google Scholar
Levitt J (1980) Chilling, freezing, and high temperature stresses. In: Koslowski T (ed) Responses of plants to environmental stress. Academic Press, New York, p 497
Google Scholar
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406. https://doi.org/10.1105/tpc.10.8.1391
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Dang P, Liu L, He C (2019) Cold acclimation by the CBF–COR pathway in a changing climate: lessons from Arabidopsis thaliana. Plant Cell Rep 38:511–519. https://doi.org/10.1007/s00299-019-02376-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171:2013–2027. https://doi.org/10.1534/genetics.105.046078
CAS
Article
PubMed
PubMed Central
Google Scholar
Manzano-Piedras E, Marcer A, Alonso-Blanco C, Picó FX (2014) Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS ONE 9:e87836. https://doi.org/10.1371/journal.pone.0087836
CAS
Article
PubMed
PubMed Central
Google Scholar
Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980. https://doi.org/10.1104/pp.109.135327
CAS
Article
PubMed
PubMed Central
Google Scholar
Meier U (1997) Growth stages of mono- and dicotyledonous plants - BBCH monograph. Blackwell, Berlin
Google Scholar
Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson S (2012) Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12:6. https://doi.org/10.1186/1471-2229-12-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700. https://doi.org/10.1016/S0169-5347(01)02291-1
Article
Google Scholar
Montesinos A, Tonsor SJ, Alonso-Blanco C, Picó FX (2009) Demographic and genetic patterns of variation among populations of Arabidopsis thaliana from contrasting native environments. PLoS ONE 4:e7213. https://doi.org/10.1371/journal.pone.0007213
CAS
Article
PubMed
PubMed Central
Google Scholar
Montesinos-Navarro A, Wig J, Pico FX, Tonsor SJ (2011) Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol 189:282–294. https://doi.org/10.1111/j.1469-8137.2010.03479.x
Article
PubMed
Google Scholar
Nagano AJ, Kawagoe T, Sugisaka J, Honjo MN, Iwayama K, Kudoh H (2019) Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. Nature Plants 5:74–83. https://doi.org/10.1038/s41477-018-0338-z
Article
PubMed
Google Scholar
Oakley CG, Ågren J, Atchison RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol Ecol 23:4304–4315. https://doi.org/10.1111/mec.12862
Article
PubMed
Google Scholar
Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW (2018) Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana. J Exp Bot 69:699–709. https://doi.org/10.1093/jxb/erx437
CAS
Article
PubMed
Google Scholar
Pagter M, Arora R (2013) Winter survival and deacclimation of perennials under warming climate: physiological perspectives. Physiol Plant 147:75–87. https://doi.org/10.1111/j.1399-3054.2012.01650.x
CAS
Article
PubMed
Google Scholar
Postma FM, Ågren J (2016) Early life stages contribute strongly to local adaptation in Arabidopsis thaliana. Proc Natl Acad Sci USA 113:7590–7595. https://doi.org/10.1073/pnas.1606303113
CAS
Article
PubMed
PubMed Central
Google Scholar
Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39:539–552. https://doi.org/10.1071/FP12078
Article
PubMed
Google Scholar
Preston JC, Sandve SR (2013) Adaptation to seasonality and the winter freeze. Front Plant Sci 4:167. https://doi.org/10.3389/fpls.2013.00167
Article
PubMed
PubMed Central
Google Scholar
Price N, Lopez L, Platts AE, Lasky JR (2020) In the presence of population structure: from genomics to candidate genes underlying local adaptation. Ecol Evol 10:1889–1904. https://doi.org/10.1002/ece3.6002
Article
PubMed
PubMed Central
Google Scholar
R Development Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Rapacz M, Jurczyk B, Sasal M (2017) Deacclimation may be crucial for winter survival of cereals under warming climate. Plant Sci 256:5–15. https://doi.org/10.1016/j.plantsci.2016.11.007
CAS
Article
PubMed
Google Scholar
Rognli OA (2013) Breeding for improved winter survival in forage grasses. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer New York, New York, pp 197–208. https://doi.org/10.1007/978-1-4614-8253-6_17
Chapter
Google Scholar
Rutter MT, Fenster CB (2007) Testing for adaptation to climate in Arabidopsis thaliana: a calibrated common garden approach. Annals Bot 99:529–536. https://doi.org/10.1093/aob/mcl282
Article
Google Scholar
Samis KE, Stinchcombe JR, Murren CJ (2019) Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. Am J Bot 106:1068–1080. https://doi.org/10.1002/ajb2.1334
Article
PubMed
Google Scholar
Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43. https://doi.org/10.2174/138920211794520178
CAS
Article
PubMed
PubMed Central
Google Scholar
Schäfer A, Schöttker-Königer T (2015) Gibt es einen Zusammenhang zwischen Merkmalen? Korrelation und Regression. In: Schäfer A, Schöttker-Königer T (eds) Statistik und quantitative Methoden für Gesundheitsfachberufe. Springer, Berlin Heidelberg, pp 147–175. https://doi.org/10.1007/978-3-662-45519-7_8
Chapter
Google Scholar
Schulz E, Tohge T, Winkler JB, Albert A, Schäffner AR, Fernie AR, Zuther E, Hincha DK (2021) Natural variation among Arabidopsis accessions in the regulation of flavonoid metabolism and stress gene expression by combined UV radiation and cold. Plant Cell Physiol 62:502–514. https://doi.org/10.1093/pcp/pcab013
CAS
Article
PubMed
PubMed Central
Google Scholar
Schwachtje J, Karojet S, Thormählen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Köhl K, van Dongen JT (2011) A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS ONE 6:e29382. https://doi.org/10.1371/journal.pone.0029382
CAS
Article
PubMed
PubMed Central
Google Scholar
Singh A, Roy S (2017) High altitude population of Arabidopsis thaliana is more plastic and adaptive under common garden than controlled condition. BMC Ecol 17:39. https://doi.org/10.1186/s12898-017-0149-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577. https://doi.org/10.1104/pp.110.161794
CAS
Article
PubMed
PubMed Central
Google Scholar
Vyse K, Pagter M, Zuther E, Hincha DK (2019) Deacclimation after cold acclimation—a crucial, but widely neglected part of plant winter survival. J Exp Bot 70:4595–4604. https://doi.org/10.1093/jxb/erz229
CAS
Article
PubMed
PubMed Central
Google Scholar
Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17. https://doi.org/10.1016/j.pmpp.2007.09.008
CAS
Article
Google Scholar
Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol 158:2–22. https://doi.org/10.1104/pp.111.189845
CAS
Article
PubMed
Google Scholar
Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C, Martin LJ, Muir CD, Sim S, Walker A, Anderson J, Egan JF, Moyers BT, Petipas R, Giakountis A, Charbit E, Coupland G, Welch SM, Schmitt J (2009) Effects of genetic perturbation on seasonal life history plasticity. Science 323:930–934. https://doi.org/10.1126/science.1165826
CAS
Article
PubMed
Google Scholar
Wilczek AM, Cooper MD, Korves TM, Schmitt J (2014) Lagging adaptation to warming climate in Arabidopsis thaliana. Proc Natl Acad Sci USA 111:7906–7913. https://doi.org/10.1073/pnas.1406314111
CAS
Article
PubMed
PubMed Central
Google Scholar
Wingler A (2014) Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature. Front Plant Sci 5:794. https://doi.org/10.3389/fpls.2014.00794
Article
PubMed
Google Scholar
Wos G, Willi Y (2015) Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata. PLoS ONE 10:e0131808. https://doi.org/10.1371/journal.pone.0131808
CAS
Article
PubMed
PubMed Central
Google Scholar
Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902. https://doi.org/10.1046/j.1365-3040.2000.00611.x
Article
Google Scholar
Yadav SK (2010) Cold stress tolerance mechanisms in plants. A Review. Agron Sustain Dev 30:515–527. https://doi.org/10.1051/agro/2009050
CAS
Article
Google Scholar
Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytol 177:419–427. https://doi.org/10.1111/j.1469-8137.2007.02262.x
Article
PubMed
Google Scholar
Zhen Y, Dhakal P, Ungerer MC (2011) Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Am Nat 178:44–52. https://doi.org/10.1086/660282
Article
PubMed
Google Scholar
Zuther E, Schulz E, Childs LH, Hincha DK (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ 35:1860–1878. https://doi.org/10.1111/j.1365-3040.2012.02522.x
CAS
Article
PubMed
Google Scholar
Zuther E, Juszczak I, Lee YP, Baier M, Hincha DK (2015) Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 5:12199. https://doi.org/10.1038/srep12199
CAS
Article
PubMed
PubMed Central
Google Scholar
Zuther E, Schaarschmidt S, Fischer A, Erban A, Pagter M, Mubeen U, Giavalisco P, Kopka J, Sprenger H, Hincha DK (2019) Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ 42:854–873. https://doi.org/10.1111/pce.13502
CAS
Article
PubMed
Google Scholar