Skip to main content
Log in

Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

An overview is presented of recent advances in our knowledge of responses and mechanisms rendering adaptation to saline conditions in sorghum. Different strategies deployed to enhance salinity stress tolerance in sorghum are also pointed out.

Abstract

Salinity stress is a growing problem worldwide. Sorghum is the fifth key crop among cereals. Understanding responses and tolerance strategies in sorghum would be therefore helpful effort for providing biomarkers for designing greatest salinity-tolerant sorghum genotypes. When sorghum exposed to salinity, salinity-tolerant genotypes most probably reprogram their gene expression to activate adaptive biochemical and physiological responses for survival. The review thus discusses the possible physiological and biochemical responses that confer salinity tolerance to sorghum under saline conditions. Although it is not characterized in sorghum, salinity perceiving and transmitting signals to downstream responses via signaling transduction pathways most likely are essential strategy for sorghum adaptation to salinity stress. Sorghum has also shown to withstand moderate saline environments and retain the germination, growth, and photosynthetic activities. Salinity-tolerant sorghum genotypes show the ability to exclude excessive Na+ from reaching shoots and induce ion homeostasis. Osmotic homeostasis and ROS detoxification are also evident as salinity tolerance strategies in sorghum. These above mechanisms lead to re-establishment of cellular ionic, osmotic, and redox homeostasis as well as photosynthesis efficiency. It is noteworthy that these mechanisms act individually or co-operatively to minimize the salinity hazards and enhance acclimation in sorghum. We conclude, however, that although these responses contribute to sorghum tolerance to salinity stress, they seem to be not adequate at higher concentrations of salinity, which agrees with sorghum ranking as moderately salinity-tolerant crop. Also, some of these tolerance strategies reported in other crops are not well studied and documented in sorghum, but most probably have roles in sorghum. Further improvement in sorghum salinity tolerance using different approaches is definitely necessary to meet the requirements of its harsh production environments, and therefore, these approaches are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Mansour and Salama (2019)

Fig. 3

Similar content being viewed by others

References

  • Abid M, Hakeem A, Shaoa Y, Liu Y, Zahoor R, Fan Y, Suyu J, Ata-Ul-Karim ST, Tian Z, Jiang D, Snider JL, Dai T (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ Exp Bot 145:12–20

    Article  CAS  Google Scholar 

  • Acosta-Motos JR, Penella C, Hernández JA, Díaz-Vivancos P, Sánchez-Blanco MJ, Navarro JM, Gómez-Bellot MJ, Barba-Espín G (2020) Towards a sustainable agriculture: strategies involving phytoprotectants against salt stress. Agron 10:194

    Article  CAS  Google Scholar 

  • Ahmar S, Gill RA, Jung K, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Molec Sci 21:2590

    Article  CAS  Google Scholar 

  • Akdemir D, Beavis W, Fritsche-Neto R, Singh AK, Isidro-Sánchez J (2019) Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity 122:672–683

    Article  CAS  PubMed  Google Scholar 

  • Al-Amoudi OA, Rashed AA (2012) Effect of nutrient cations to improving salinity-tolerance responses in Sorghum bicolor L. Int J Life Sci Pharma Res 2:77–87

    Google Scholar 

  • Al-baldawi MHK, Hamza JH (2017) Seed priming effect on field emergence and grain yield in sorghum. J Centr Europ Agric 18:404–423

    Article  Google Scholar 

  • Ali AYA, Ibrahim ME, Zhou G, Nimir NES, Jiao X, Zhu G, Elsiddig AMI, Suliman MSE, Elradi SBM, Yue W (2020) Exogenous jasmonic acid and humic acid increased salinity tolerance of sorghum. Agron J 112:871–884

    Article  CAS  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Gen Mol Biol 40:326–345

    Article  CAS  Google Scholar 

  • Almodares A, Hadi MR, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7:1492–1495

    Article  Google Scholar 

  • Almodares A, Hadi MR, Dosti B (2008) The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Res J Environ Sci 2:298–304

    Article  Google Scholar 

  • Almodares A, Hadi MR, Kholdebarin B, Samedani B, Kharazian ZA (2014) The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl and K+ ions in relation to salinity. J Environ Biol 35:733–739

    CAS  PubMed  Google Scholar 

  • Al-Tabbal JASM (2017) Germination and physiological traits to ascertain the ability of hormonal priming to improve salinity tolerance in Sorghum bicolor. J Agron 16:138–146

    Article  CAS  Google Scholar 

  • Amoah JN, Antwi-Berko D (2020) Impact of salinity stress on membrane status, phytohormones, antioxidant defense system and transcript expression pattern of two contrasting sorghum genotypes. Egypt J Agron 42:123–136

    Google Scholar 

  • Antunes GGG, de Castro RD, Neto VG, Marques ACSS, Takahashi D, Fernandez LG, Cruz CRP, Toorop P, Aflitos SA, Hilhorst HWM, Ligterink W (2021) Osmopriming-associated genes in Poincianella pyramidalis. Environ Exp Bot 183:104345

    Article  CAS  Google Scholar 

  • Arafa AA, Khafagy MA, El-Banna MF (2009) The effect of glycinebetaine or ascorbic acid on grain germination and leaf structure of sorghum plants grown under salinity stress. Aust J Crop Sci 3:294–304

    CAS  Google Scholar 

  • Asfaw KG (2010) Effects of salinity on seedling biomass production and relative water content of twenty sorghum (Sorghum bicolor L. Moench) accessions. Res J Agron 4:24–30

    Article  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Baillo EH, Kimotho RN, Zhang Z, Xu P (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771

    Article  CAS  PubMed Central  Google Scholar 

  • Baiseitova G, Sarsenbayev B, Kirshibayev E, Kamunur M (2018) Influence of salinity (NaCl) on the photosynthetic pigments content of some sweet sorghum varieties. BIO Web of Conf 11:00003

    Article  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24:239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros BGF, de Freitas ADS, Tabosa JN, de Lyra MCCP, Mergulhao ACES, da Silva AF, Oliveira WS, Fernandes-Junior PI, Sampaio EVSB (2020) Biological nitrogen fixation in field-grown sorghum under different edaphoclimatic conditions is confirmed by N isotopic signatures. Nutr Cycl Agroecosyst 117:93–101

    Article  CAS  Google Scholar 

  • Bavei V, Shiran B, Arzani A (2011) Evaluation of salinity tolerance in sorghum (Sorghum bicolor L.) using ion accumulation, proline and peroxidase criteria. Plant Growth Regul 64:275–285

    Article  CAS  Google Scholar 

  • Beyaz R, Kır H (2020) Physio-biochemical analyses in seedlings of sorghum-sudangrass hybrids that are grown under salt stress under in vitro conditions. Turk J Biochem 45:177–184

    Google Scholar 

  • Borde M, Dudhane M, Kulkarni M (2017) Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza-ecophysiology, secondary metabolites nanomaterials. Springer, Cham, pp 71–86

    Chapter  Google Scholar 

  • Calone R, Sanoubar R, Lambertini C, Speranza M, Antisari LV, Vianello G, Barbanti L (2020) Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants 9:561

    Article  CAS  PubMed Central  Google Scholar 

  • Carillo P, Ciarmiello LF, Woodrow P, Corrado G, Chiaiese P, Rouphael Y (2020) Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology 9:253

    Article  CAS  PubMed Central  Google Scholar 

  • Ceccarelli S, Grando S (2020) Evolutionary plant breeding as a response to the complexity of climate change. iScience 23:10181

    Article  CAS  Google Scholar 

  • Chai YY, Jiang CD, Shi L, Shi TS, Gu WB (2010) Effects of exogenous spermine on sweet sorghum during germination under salinity. Biol Plant 54:145–148

    Article  Google Scholar 

  • Chaugoo J, Naito H, Kasuga S, Ehara H (2013) Comparison of young seedling growth and sodium distribution among sorghum plants under salt stress. Plant Prod Sci 16:261–270

    Article  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Chen X, Zhang R, Xing Y, Jiang B, Li B, Xu X, Zhou Y (2021) The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE 16:e0245505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: Root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87

    Article  CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  CAS  PubMed  Google Scholar 

  • Coelho DS, Simões WL, Salviano AM, Mesquita AC, Alberto KC (2018) Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels. Rev Bars Eng Agric Ambient 22:231–236

    Article  Google Scholar 

  • Costa PHA, Neto ADA, Bezerra MA, Prisco JT, Gomes-Filho E (2005) Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance. Braz J Plant Physiol 17:353–361

    Article  Google Scholar 

  • Dai LY, Zhang LJ, Jiang SJ, Yin KD (2014) Saline and alkaline stress genotypic tolerance in sweet sorghum is linked to sodium distribution. Acta Agric Scand Sec B Soil Plant Sci 64:471–481

    CAS  Google Scholar 

  • Dastogeer KMG, Zahan MI, Tahjib-Ul-Arif M, Akter MA, Okazaki S (2020) Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: a meta-analysis. Front Plant Sci 11:588550

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehnavi AR, Zahedi M, Razmjoo J, Eshghizadeh H (2019) Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J Plant Nutri 42:1333–1349

    Article  CAS  Google Scholar 

  • Dehnavi AR, Zahedi M, Ludwiczak A, Perez SC, Piernik A (2020) Effect of salinity on seed germination and seedling development of sorghum [Sorghum bicolor (L.) Moench] genotypes. Agronomy 10:859

    Article  CAS  Google Scholar 

  • Desoky EM, Merwad AM, Elrys AS (2017) Response of pea plants to natural bio-stimulants under soil salinity stress. Am J Plant Physiol 12:28–37

    CAS  Google Scholar 

  • Desoky EM, Merwad AM, Rady MM (2018) Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Commun Soil Sci Plant Anal 49:967–983

    Article  CAS  Google Scholar 

  • Desoky EM, ElSayed AI, Merwad AM, Rady MM (2019) Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol Biochem 142:292–302

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12:370

    Article  CAS  Google Scholar 

  • Ding T, Yang Z, Wei X, Yuan F, Yin S, Wang B (2018) Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Funct Plant Biol 45:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Dykes L, Rooney LW, Waniska D, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agric Food Chem 53:6813–6818

    Article  CAS  PubMed  Google Scholar 

  • Eljebbawi A, Guerrero YCR, Dunand C, Estevez JM (2021) Highlighting reactive oxygen species as multitaskers in root development. iScience 24:101978

    Article  PubMed  Google Scholar 

  • El-Naim AM, Mohammed KE, Ibrahim EA, Suleiman NN (2012) Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum biolor L. Moench) cultivars. Sci Technol 2:16–20

    Article  Google Scholar 

  • Elsiddig A, Zhou G, Ahmed N (2021) Ameliorative effect of ascorbic acid and biochar on growth, and antioxidant enzymes on early seedling of sorghum under salinity conditions. Sci Rep. https://doi.org/10.21203/rs.3.rs-136040/v1

    Article  PubMed  PubMed Central  Google Scholar 

  • Esmaili E, Kapourchal SA, Malakouti MJ, Homaee M (2008) Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil Environ 4:537–546

    Article  Google Scholar 

  • Fang C, Li K, Wu Y, Wang D, Zhou J, Liu X, Li Y, Jin C, Liu X, Mur LA, Luo J (2019) OsTSD2-mediated cell wall modification affects ion homeostasis and salt tolerance. Plant Cell Environ 42:1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization, FAO (2009) Land and plant nutrition management service. Available at http://www.fao.org/ag/agl/agll/spush/

  • Fernandez MGS, Strand K, Hamblin MT, Westgate M, Heaton E, Kresovich S (2015) Genetic analysis and phenotypic characterization of leaf photosynthetic capacity in a sorghum (Sorghum spp.) diversity panel. Genet Resour Crop Evol 62:639–650

    Google Scholar 

  • Forghani AH, Almodares A, Ehsanpour AK (2018) Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Appl Biol Chem 61:113–124

    Article  CAS  Google Scholar 

  • Freitas VS, Alencar NLM, de Lacerda CF, Prisco JT, Gomes-Filho E (2011) Changes in physiological and biochemical indicators associated with salt tolerance in cotton, sorghum and cowpea. Afri J Biochem Res 5:264–271

    CAS  Google Scholar 

  • Gadelha CG, Freitas WES, Araújo GS, Coelho DG, Gomes-Filho E (2017) effects of exogenous selenium application on the growth of sensitive and tolerant sorghum plants under salt stress. IV Inovagri Int Meeting. https://doi.org/10.7127/iv-inovagri-meeting-2017-res4970910

    Article  Google Scholar 

  • Godoy F, Olivos-Hernández K, Stange C, Handford M (2021) Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants 10:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães MJM, Simões WL, de Oliveira AR, de Araujo GGL, Silva EFF, Willadino LG (2019) Biometrics and grain yield of sorghum varieties irrigated with salt water. Revista Brasil Engin Agri Ambi 23:285–290

    Article  Google Scholar 

  • Guimarães MJM, Simões WL, Barros JAB, Willadino LG (2020) Salinity decreases transpiration of sorghum plants. Exp Results 1:1–8

    Article  Google Scholar 

  • Guo YY, Tian SS, Liu SS, Wang WQ, Sut N (2018) Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica 56:861–872

    Article  CAS  Google Scholar 

  • Hanafy RS (2017) Using Moringa olifera leaf extract as a bio-fertilizer for drought stress mitigation of Glycine max L. plants. Egypt J Bot 57:281–292

    Google Scholar 

  • Hassanein AM, Azab AM (1993) Salt tolerance of grain sorghum. In: Lieth H, AlMasoom A (eds) Towards the rational use of high salinity-tolerant plants, vol 2. Kluwer Acad Pub, Netherlands, pp 153–156

    Chapter  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Heidari M (2009) Antioxidant activity and osmolyte concentration of sorghum (Sorghum bicolor) and wheat (Triticum aestivum) genotypes under salinity stress. Asian J Plant Sci 8:240–244

    Article  CAS  Google Scholar 

  • Henderson AN, Crim PM, Cumming JR, Hawkins JS (2020) Phenotypic and physiological responses to salt exposure in sorghum reveal diversity among domesticated landraces. Am J Bot 107:983–992

    Article  CAS  PubMed  Google Scholar 

  • Henfy M, Abdel-Kader DZ (2009) Antioxidant-enzyme system as selection criteria for salt tolerance in forage sorghum genotypes (Sorghum bicolor L. Moench). In: Ashraf M, Ozturk M, Athar H (eds) Salinity and water stress, improving crop effeciency. Springer, Singapore, pp 25–36

    Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotech 37:744–754

    Article  CAS  Google Scholar 

  • Hilker M, Schmulling T (2019) Stress priming, memory, and signaling in plants. Plant Cell Environ 42:753–761

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Skalicky M, Brestic M, Maitra S, Alam MA, Abu Syed M, Hossain J, Sarkar S, Saha S, Bhadra P, Shankar T, Bhatt R, Chaki AK, Sabagh AEL, Islam T (2021) Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agron 11:241

    Article  CAS  Google Scholar 

  • Hostetler AN, Govindarajulu R, Hawkins JS (2020) QTL mapping in an interspecific sorghum population uncovers plasma-membrane intrinsic proteins as key regulators of salinity tolerance. bioRxiv. https://doi.org/10.1101/2020.08.05.238972

    Article  Google Scholar 

  • Huang R (2018) Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J Integr Agri 17:739–746

    Article  CAS  Google Scholar 

  • Huang P, He L, Abbas A, Hussain S, Hussain S, Du D, Hafeez MB, Balooch S, Zahra N, Ren X, Rafiq M, Saqib M (2021) Seed priming with sorghum water extract improves the performance of camelina [Camelina sativa (L.) Crantz] under salt stress. Plants 10:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur SN (1991) Effect of osmoconditioning on the productivity of Italian ryegrass and sorghum under suboptimal conditions. Kor J Animal Sci 33:101–105

    Google Scholar 

  • Hurtado AC, Chiconato DA, Prado RM, Junior GSS, Viciedo DO, Piccolo MC (2020) Silicon application induces changes C:N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J Biol Sci 27:3711–3719

    Article  CAS  Google Scholar 

  • Hurtadoa AC, Chiconato DA, Prado RM, Junior GSS, Felisberto G (2019) Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sun flower plants. Plant Physiol Biochem 142:224–233

    Article  CAS  Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics, and management. Adv Agron 148:231–287

    Article  Google Scholar 

  • Hussein MM, Abdelkader AA, Kady KA, Youssef RA, Alva AK (2010) Sorghum response to foliar application of phosphorus and potassium with saline water irrigation. J Crop Improve 24:324–336

    Article  CAS  Google Scholar 

  • Ibrahim AH (2004) Efficacy of exogenous glycine betaine application on sorghum plants grown under salinity stress. Acta Bot Hung 46:307–318

    Article  CAS  Google Scholar 

  • Ibrahim MEH, Ali AYA, Elsiddig AMI, Zhou G, Nimir NEA, Ahmad I, Suliman MSE, Elradi SBM, Salih EGI (2020) Biochar improved sorghum germination and seedling growth under salinity stress. Agron J 112:911–920

    Article  CAS  Google Scholar 

  • Igartua E, Gracia MP, Lasa JM (1995) Field responses of grain sorghum to a salinity gradient. Field Crops Res 42:15–25

    Article  Google Scholar 

  • Isopi R, Fabbri P, del Gallo M, Puppi G (1995) Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18:43–55

    Google Scholar 

  • Jadhav SS, Bhamburdekar SB (2020) Improvement in yield and yield parameters of sweet sorghum cultivars after boron treatment. Asian J Plant Sci Res 10:51–54

    CAS  Google Scholar 

  • Joardar JC, Razir SAA, Islam M, Kobir MH (2018) Salinity impacts on experimental fodder sorghum production. SAARC J Agri 16:145–155

    Article  Google Scholar 

  • Kadier Y, Zu Y, Dai Q, Song G, Lin S, Sun Q, Lu M (2017) Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regul 83:301–312

    Article  CAS  Google Scholar 

  • Kafi M, Nabati J, Masoumi A, Mehrgerdi MZ (2011) Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench.]. Pak J Bot 43:2457–2462

    CAS  Google Scholar 

  • Kandil AA, Sharief AE, Elbadry DEA (2017) Germination characters as affected by salinity stress and soaking grain sorghum genotypes in humic acid. Int J Environ Agri Biotech 2:3268–3278

    Google Scholar 

  • Kante M, Rattunde F, Nébié B, Sissoko I, Diallo B, Diallo A, Touré A, Weltzien E, Haussmann BIG, Leiser WL (2019) Sorghum hybrids for low-input farming systems in West Africa: quantitative genetic parameters to guide hybrid breeding. Crop Sci 59:2544–2561

    Article  Google Scholar 

  • Kausar A, Gull M (2019) Influence of salinity stress on the uptake of magnesium, phosphorus, and yield of salt susceptible and tolerant sorghum cultivars (Sorghum bicolor L.). J Appl Biol Biotech 7:53–58

    Article  CAS  Google Scholar 

  • Kausar A, Ashraf MY, Niaz M (2014) Some physiological and genetic determinants of salt tolerance in sorghum [Sorghum bicolor (L.) Moench]: biomass production and nitrogen metabolism. Pak J Bot 46:515–519

    Google Scholar 

  • Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Breusegem FV, Gechev T (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotech Adv 40:107503

    Article  CAS  Google Scholar 

  • Khalil RMA (2013) Molecular and biochemical markers associated with salt tolerance in some sorghum genotypes. World Appl Sci J 22:459–469

    CAS  Google Scholar 

  • Kim SJ, Eo J, Lee E, Park H, Eom A (2017) Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology 45:20–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Wilkens MMT (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32:1063–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyro HW (1997) Ultrastructural and physiological changes in root cells of Sorghum plants (Sorghum bicolor X S. sudanensis cv. Sweet Sioux) induced by NaCl. J Exp Bot 48:693–706

    Article  CAS  Google Scholar 

  • Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BVS (2007) Screening sorghum genotypes for salinity-tolerant biomass production. Euphytica 156:15–24

    Article  Google Scholar 

  • Kumari PH, Kumar AS, Sivan P, Katam R, Suravajhala P, Rao KS, Varshney RK, Kishor PBK (2017) Overexpression of a plasma membrane Na+/H+-antiporter-like protein (SbNHXLP) confers salt tolerance and improves fruit yield in tomato by maintaining ion homeostasis. Front Plant Sci 7:2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari PH, Kumar SA, Ramesh K, Reddy PS, Nagaraju M, Prakash AB, Shah T, Henderson A, Srivastava RK, Rajasheker G, Chitikineni A, Varshney RK, Rathnagiri P, Narasu LM, Kavi Kishor PB (2018) Genome-wide identification and analysis of Arabidopsis sodium proton antiporter (NHX) and human sodium proton exchanger (NHE) homologs in Sorghum bicolor. Genes 9:236

    Article  CAS  Google Scholar 

  • La Rosa-Ibarra MD, Maiti RK (1995) Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J Plant Physiol 146:515–519

    Article  Google Scholar 

  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2001) Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Rev Bras Fisiol Veg 13:270–284

    Article  Google Scholar 

  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120

    Article  CAS  Google Scholar 

  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76

    Article  CAS  Google Scholar 

  • Lacerda CF, Cambraia J, Prisco JT, Oliva MA (2006) Proline accumulation in sorghum leaves is enhanced by salt-induced tissue dehydration. Revista Ciência Agron 37:110–112

    Google Scholar 

  • Leuendorf JE, Frank M, Schmülling T (2020) Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 10:689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu G, Yang C, Yang L, Liang Z (2019) Genome-wide identification and expression analysis of HKT transcription factor under salt stress in nine plant species. Ecotoxic Environ Safety 171:435–442

    Article  CAS  Google Scholar 

  • Liu P, Yin LN, Wang SW, Zhang MJ, Deng XP, Zhang SQ, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-inducedtolerance in plants. Front Plant Sci 11:591911

    Article  PubMed  PubMed Central  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54:647–652

    Article  CAS  Google Scholar 

  • Mahmood T, Iqbal N, Raza H, Qasim M, Ashraf MY (2010) Growth modulation and ion partitioning in salt stressed sorghum (Sorghum bicolor L.) by exogenous supply of salicylic acid. Pak J Bot 42:3047–3054

    CAS  Google Scholar 

  • Maiti RK, La Rosa-Ibarra MD, Sandoval ND (1994) Genotypic variability in glossy sorghum lines for resistance to drought, salinity and temperature stress at the seedling stage. J Plant Physiol 143:241–244

    Article  Google Scholar 

  • Mansour MMF (1995) NaCl alteration of plasma membrane of Allium cepa epidermal cells. Alleviation by calcium. J Plant Physiol 145:726–730

    Article  CAS  Google Scholar 

  • Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Ali EF (2017a) Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiol Plant 39:56

    Article  CAS  Google Scholar 

  • Mansour MMF, Ali EF (2017b) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Hassan FAS (2021) How salt stress-responsive proteins regulate plant adaptation to saline conditions? Funct Integr Genomics [unpublished data]

  • Mansour MMF, Salama KHA (2019) Cellular mechanisms of plant salt tolerance. In: Giri B, Varma A (eds) Microorganisms in saline environments: strategies and functions. Springer, Switzerland, pp 169–210

    Chapter  Google Scholar 

  • Mansour MMF, Stadelmann EJ (1994) NaCl-induced changes in protoplasmic characteristics of Hordeum vulgare cultivars differing in salt tolerance. Physiol Plant 91:389–394

    Article  CAS  Google Scholar 

  • Mansour MMF, Lee-Stadelmann OY, Stadelmann EJ (1993) Solute potential and cytoplasmic viscosity in Triticum aestivum and Hordeum vulgare under salt stress. A comparison of salt resistant and salt sensitive lines and cultivars. J Plant Physiol 142:623–628

    Article  CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Allam HYH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev 81:416–451

    Article  Google Scholar 

  • Mansour MMF, Ali EF, Salama KHA (2019) Does seed priming play a role in regulating reactive oxygen species under saline conditions? In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, New Jersey, pp 437–488

    Chapter  Google Scholar 

  • Mansour MMF, Salama KHA, Morsy AA, Emam MM (2020) Plasma membrane lipids and adaptation of plants to salt stress. In: Daniels JA (ed) Advances in environmental research. Nova Science Publishers, New York, pp 1–111

    Google Scholar 

  • Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbinda W, Kimtai M (2019) Evaluation of morphological and biochemical characteristics of sorghum [Sorghum bicolor [L.] Moench] varieties in response salinity stress. Annu Res Rev Biol 33:1–9

    Article  CAS  Google Scholar 

  • Miranda RS, Gomes-Filho E, Prisco JT, Alvarez-Pizarro JC (2016) Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regul 78:121–131

    Article  CAS  Google Scholar 

  • Miranda RS, Alvarez-Pizarro JC, Costa JH, Paula SO, Prisco JT, Gomes-Filho E (2017a) Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signal Behav 12:e1361075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miranda RS, Mesquita RO, Costa JH, Alvarez-Pizarro JC, Prisco JT, Gomes-Filho E (2017b) Integrative control between proton pumps and SOS1 antiporters in roots is crucial for maintaining low Na+ accumulation and salt tolerance in ammonium-supplied Sorghum bicolor. Plant Cell Physiol 58:522–536

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mofokeng AM, Shimelis H, Laing M (2017) Breeding strategies to improve sorghum quality. Aust J Crop Sci 11:142–148

    Article  CAS  Google Scholar 

  • Mulaudzi T, Hendricks K, Mabiya T, Muthevhuli M, Ajayi RF, Mayedwa N, Gehring C, Iwuoha E (2020) Calcium improves germination and growth of Sorghum bicolor seedlings under salt stress. Plants 9:730

    Article  CAS  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakmee PS, Techapinyawat S, Ngamprasit S (2016) Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agric Nat Resour 50:173–178

    CAS  Google Scholar 

  • Nawas K, Talat A, Hussain K, Majeed A (2010) Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor l.) by exogenous application of proline at seedling stage. World Appl Sci J 10:93–99

    Google Scholar 

  • Neji I, Rajhi I, Baccouri B, Barhoumi F, Amri M, Mhadhbi H (2021) Leaf photosynthetic and biomass parameters related to the tolerance of Vicia faba L. cultivars to salinity stress. Euro-Mediterranean J Environ Integr 6:22

    Article  Google Scholar 

  • Nephali L, Piater LA, Dubery IA, Patterson V, Huyser J, Burgess K, Tugizimana F (2020) Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Metabolites 10:505

    Article  CAS  PubMed Central  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004a) Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci 44:797–805

    CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004b) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Google Scholar 

  • Nimir NEA, Zhou G, Guo W, Ma B, Lu S, Wang Y (2017) Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability, and photosynthesis under salt stress of sweet sorghum [Sorghum bicolor (L.) Moench]. Canad J Plant Sci 97:525–535

    CAS  Google Scholar 

  • Nimir NEA, Zhou G, Zhu G, Ibrahim ME (2020) Response of some sorghum varieties to GA3 concentrations under different salt compositions. Chilean J Agri Res 80:478–486

    Article  Google Scholar 

  • Niu G, Xu W, Rodriguez D, Sun Y (2012) Growth and physiological responses of maize and sorghum genotypes to salt stress. ISRN Agron 2012:145072

    Google Scholar 

  • Nuhu N (2015) Foliar application effects of stimurel, force 4-L and dulzee on yield of sorghum speed feed. Global J Biochem Biotech 3:128–131

    Google Scholar 

  • Nxele X, Klein A, Ndimb BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African J Bot 108:261–266

    Article  CAS  Google Scholar 

  • Okur B, Örçen N (2020) Soil salinization and climate change. In: Prasad MNV, Pietrzykowski M (eds) Climate change and soil interactions. Elsevier, Amsterdam, pp 331–350

    Chapter  Google Scholar 

  • Oliveira AB, Alencar NLM, Prisco JT, Gomes-Filho E (2011) Accumulation of organic and inorganic solutes in NaCl-stressed sorghum seedlings from aged and primed seeds. Sci Agric 68:632–637

    Article  Google Scholar 

  • Oliveira FDB, Miranda RS, Araújo GS, Coelho DG, Lobo MDP, Paula-Marinho SO, Lopes LS, Monteiro-Moreira ACO, Carvalho HH, Gomes-Filho E (2020a) New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Plant Physiol Biochem 154:723–734

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DF, Lopes LS, Gomes-Filho E (2020b) Metabolic changes associated with differential salt tolerance in sorghum genotypes. Planta 252:34

    Article  PubMed  CAS  Google Scholar 

  • Omari R, Nhiri M (2015) Adaptive response to salt stress in sorghum (Sorghum bicolor). Am-Eurasian J Agri Environ Sci 15:1351–1360

    Google Scholar 

  • Omer MZEG, Abdalla AH (2017) The effect of salt concentration on growth and yield of two forage sorghum [Sorghum bicolor (L.) Moench] lines. Agri Forest Fish 5:280–284

    Google Scholar 

  • Oosten MJ, Pepe O, de Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Article  CAS  Google Scholar 

  • Paciolla C, Paradiso A, de Pinto MC (2016) Cellular redox homeostasis as central modulator in plant stress response. In: Gupta D, Palma J, Corpas F (eds) Redox state as a central regulator of plant-cell stress responses. Springer, Cham, pp 1–23

    Google Scholar 

  • Panatha P, Dassanayake M (2020) Living with salt. Innovation 1:100050

    Google Scholar 

  • Pandey K, Lahiani MH, Hicks VK, Hudson MK, Green MJ, Khodakovskaya M (2018) Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE 13:e0202274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patane C, Cavallaro V, Salvatore L (2009) Germination and radical growth in unprimed and primed seed of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Indust Crop Prod 30:1–8

    Article  CAS  Google Scholar 

  • Peña RJH, López JMV, Ahumada GAL, Félix FR, Moreno AO, Morales CB, Córdova JPL, Puente EOR (2020) Plant growth promoting bacteria and mycorrhizal on varieties of sorghum spp. germination under stressing abiotic conditions. Trop Subtrop Agroecosyst 23:48

    Google Scholar 

  • Peng J, Lill H, Li J, Tan Z (1994) Screening Chinese sorghum cultivars for tolerance to salinity. Sorghum Millets Newsl 35:124

    Google Scholar 

  • Pinheiro CL, Araújo HTN, de Brito SF, Maia MS, Viana JS, Filho SM (2018) Seed priming and tolerance to salt and water stress in divergent grain sorghum genotypes. Amer J Plant Sci 9:606–616

    Article  CAS  Google Scholar 

  • Pirasteh-Anosheh H, Hashemi SE (2020) Priming, a promising practical approach to improve seed germination and plant growth in saline conditions. Asian J Agri Food Sci 8:6–10

    Google Scholar 

  • Punia H, Tokas J, Bhadu S, Mohanty AK, Rawat P, Malik A, Satpal (2020) Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech 10:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi A, Kovar M, He X, Zivcak M, Kataria S, Kalaji HM, Skalicky M, Ibrahimova UF, Hussain S, Mbarki S, Brestic M (2020) JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica 58:518–528

    Article  CAS  Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PBK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    Article  PubMed  CAS  Google Scholar 

  • Reddy INBL, Kim B, Yoon I, Kim K, Kwon T (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24:123–144

    Article  Google Scholar 

  • Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, Hasanuzzaman M (2021) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10:37

    Article  CAS  Google Scholar 

  • Roy RC, Sagar A, Jannat-E-Tajkia AM, Zakir Hossain AKM (2018) Effect of salt stress on growth of sorghum germplasms at vegetative stage. J Bangladesh Agri Univ 16:67–72

    Article  Google Scholar 

  • Salama KHA, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol Plant 37:170

    Article  CAS  Google Scholar 

  • Salama KHA, Mansour MMF, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Sarkar MN, Hossain AKMZ, Begum S, Islam SN, Biswas SK, Tareq MZ (2019) Effect of salinity on seed germination and seedlings growth of sorghum (Sorghum bicolor L.). J Biosci Agri Res 21:1786–1793

    Article  Google Scholar 

  • Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12–20

    Article  CAS  Google Scholar 

  • Selem EE (2019) Physiological effects of Spirulina platensis in salt stressed Vicia faba L. plants. Egypt J Bot 59:185–194

    Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shakeri E, Emam Y (2017) Selectable traits in sorghum genotypes for tolerance to salinity stress. J Agri Sci Tech 19:1319–1332

    Google Scholar 

  • Shakeri E, Emam Y, Pessarakli M, Tabatabaei SA (2020) Biochemical traits associated with growing sorghum genotypes with saline water in the field. J Plant Nutr 43:1136–1153

    Article  CAS  Google Scholar 

  • Shi Z, Zhang J, Lu S, Li Y, Wang F (2020) Arbuscular mycorrhizal fungi improve the performance of sweet sorghum grown in a Mo-contaminated soil. J Fungi 6:44

    Article  CAS  Google Scholar 

  • Shihab MO, Hamza JH (2019) Seed priming of sorghum cultivars to tolerate salt stress. IOP Conf Ser: Earth Environ Sci 388:012044

    Article  Google Scholar 

  • Shihab MO, Hamza JH (2020) Seed priming of sorghum cultivars by gibberellic and salicylic acids to improve seedling growth under irrigation with saline water. J Plant Nut 43:1–17

    Article  CAS  Google Scholar 

  • Silva MLS, de Sousa HG, Silva MLS, de Lacerda CF, Gomes-Filho E (2019) Growth and photosynthetic parameters of saccharine sorghum plants subjected to salinity. Acta Sci Agron 41:e42607

    Article  Google Scholar 

  • Singh R, Dahiru R, Musa M (2012) Osmopriming duration influence on germination, emergence and seedling growth of sorghum. Seed Tech 34:111–118

    Google Scholar 

  • Singh H, Jassal RK, Kang JS, Sandhu SS, Kang H, Grewal K (2015) Seed priming techniques in field crops—a review. Agri Rev 36:251–264

    Article  Google Scholar 

  • Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M (2020) Breeding and biotechnological interventions for trait improvement: status and prospects. Planta 252:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltabayeva A, Ongaltay A, Omondi JO, Srivastava S (2021) Morphological, physiological and molecular markers for salt-stressed plants. Plants 10:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Li J, Sui Y, Han G, Zhang Y, Guo S, Sui N (2020) The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Mole Biol 102:603–614

    Article  CAS  Google Scholar 

  • Steinhorst L, Kudl J (2019) How plants perceive salt. Nature 572:318–320

    Article  CAS  PubMed  Google Scholar 

  • Su M, Li XF, Ma XY, Peng XJ, Zhao AG, Cheng LQ, Chen SY, Liu GS (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181:652–659

    Article  CAS  PubMed  Google Scholar 

  • Sui N, Yang Z, Liu M, Wang B (2015) Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genom 16:34

    Article  CAS  Google Scholar 

  • Sun L, Huang RD (2014) Responses to salt stress of protective enzyme system in sorghum seedlings. J Shenyang Agri Univ 45:134–137

    CAS  Google Scholar 

  • Sun J, He L, Li T (2019) Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE 14:e0220340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surowka E, Hura T (2020) Osmoprotectants and nonenzymatic antioxidants in halophytes. In: Grigore MN (ed) Handbook of halophytes. Springer Nature, Switzerland, pp 1–30

    Google Scholar 

  • Tari I, Laskay G, Takacs Z, Poor P (2013) Response of sorghum to abiotic stresses: a review. J Agron Crop Sci 199:24–274

    Article  CAS  Google Scholar 

  • Temizgul R, Kaplan M, Kara R, Yilmaz S (2016) Effects of salt concentrations on antioxidant enzyme activity of grain sorghum. Curr Trends Nat Sci 5:171–178

    Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Zhang LR, Zhang LL, Xing T, Peng JZ, Sun SL, Chen G, Wang XJ (2013) A novel stress-associated protein SbSAP14 from Sorghum bicolor confers tolerance to salt stress in transgenic rice. Molec Breed 32:437–449

    Article  CAS  Google Scholar 

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014) SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56:315–332

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Sun Y, Shi Z (2019) Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7:289

    Article  CAS  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor P (2020) Engineering salinity tolerance in plants: progress and prospects. Planta 21:76

    Article  CAS  Google Scholar 

  • Woldesemayat AA, Modise DM, Gemeildien J, Ndimba BK, Christoffels A (2018) Cross-species multiple environmental stress responses: an integrated approach to identify candidate genes for multiple stress tolerance in sorghum [Sorghum bicolor (L.) Moench] and related model species. PLoS ONE 13:e0192678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Johnson SK, Bornman JF, Bennett SJ, Clarke MW, Singh V, Fang Z (2016) Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Sci Rep 6:21835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Johnson SK, Bornman JF, Bennett SJ, Fang Z (2017) Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chem 214:199–207

    Article  CAS  PubMed  Google Scholar 

  • Wulgo UK, Al-Solaimani IM, Alghabari FM (2019) Grain sorghum yield and yield components influenced by the effect of potassium fertilizer and saline irrigation water under arid land conditions. Int J Eng Res Tech 8:649–654

    Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yamazaki K, Ishimori M, Kajiya-Kanegae H, Takanashi H, Fujimoto M, Yoneda J, Yano K, Koshiba T, Tanaka R, Iwata H, Tokunaga T, Tsutsumi N, Fujiwara T (2020) Effect of salt tolerance on biomass production in a large population of sorghum accessions. Breed Sci 70:167–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Zhao S, Zhang L, Zhang L, Xu G, Sun J (2012) Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J Agron Crop Sci 198:218–226

    Article  CAS  Google Scholar 

  • Yan HW, Hong L, Zhou YQ, Jiang HY, Zhu SW, Fan J, Cheng BJ (2013) A genome-wide analysis of the ERF gene family in sorghum. Genet Mol Res 12:2038–2055

    Article  CAS  PubMed  Google Scholar 

  • Yan K, Xu HL, Cao W, Chen XB (2015) Salt priming improved salt tolerance in sweet sorghum by enhancing osmotic resistance and reducing root Na+ uptake. Acta Physiol Plant 37:203

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zheng H, Wei X, Song J, Wang B, Sui N (2018) Transcriptome analysis of sweet sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant Soil 430:423–439

    Article  CAS  Google Scholar 

  • Yang Z, Li J, Liu L, Xie Q, Sui N (2020) Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci 10:1722

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz S, Temizgül R, Yürürdurmaz C, Kaplan M (2020) Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro 32:31–38

    Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    Article  CAS  PubMed  Google Scholar 

  • You H, Yinghui Z, Zhao Z-Y, Che P, Albertsen M, Glassman K, White W (2015) Quantifying the bioefficacy of ß-carotene-biofortified sorghum using a Mongolian gerbil model. FASEB J 29(supplement 605):3

    Google Scholar 

  • Zamani A, Emam Y, Pessarakli M, Shakeri E (2021) Growth and biochemical responses of sorghum genotypes to nitrogen fertilizer under salinity stress conditions. J Plant Nutri 44:569–579

    Article  CAS  Google Scholar 

  • Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:24.1-24.31

    Google Scholar 

  • Zhang F, Yu J, Johnston CR, Wang Y, Zhu K, Lu F, Zhang Z, Zou J (2015) Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS ONE 10:e0140620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Xu N, Wu X, Wang J, Ma S, Li X, Sun G (2018) Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J Plant Interact 13:506–513

    Article  CAS  Google Scholar 

  • Zhang F, Sapkota S, Neupane A, Yu J, Wang Y, Zhu K, Lu F, Huang R, Zou J (2020) Effect of salt stress on growth and physiological parameters of sorghum genotypes at an early growth stage. Ind J Exp Biol 58:404–411

    CAS  Google Scholar 

  • Zhao X, Wei P, Liu Z, Yu B, Shi H (2017) Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiol Plant 39:19

    Article  CAS  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu J, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Guo X, He B, Sun L, Peng Y, Dong S, Liu T, Jiang S, Ramachandran S, Liu C, Jing H (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Liu S, Feng J, Wang W, Wang Y, Yu Q, Liao Y, Mo Y, Xu Z, Li L, Gao X, Jia X, Zhu J, Chen R (2021) Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environ Exp Bot 182:104327

    Article  CAS  Google Scholar 

  • Zhu J (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, An L, Jiao X, Chen X, Zhou G, McLaughlin N (2019) Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean J Agri Res 79:415–424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Magdy Fahim Mansour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M.M.F., Emam, M.M., Salama, K.H.A. et al. Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. Planta 254, 24 (2021). https://doi.org/10.1007/s00425-021-03671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03671-8

Keywords

Navigation