Skip to main content

Advertisement

Log in

Sorghum mitigates climate variability and change on crop yield and quality

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Global food insecurity concerns due to climate change, emphasizes the need to focus on the sensitivity of sorghum to climate change and potential crop improvement strategies available, which is discussed in the current review to promote climate-smart agriculture.

Abstract

Climate change effects immensely disturb the global agricultural systems by reducing crop production. Changes in extreme weather and climate events such as high-temperature episodes and extreme rainfalls events, droughts, flooding adversely affect the production of staple food crops, posing threat to ecosystem resilience. The resulting crop losses lead to food insecurity and poverty and question the sustainable livelihoods of small farmer communities, particularly in developing countries. In view of this, it is essential to focus and adapt climate-resilient food crops which need lower inputs and produce sustainable yields through various biotic and abiotic stress-tolerant traits. Sorghum, “the camel of cereals”, is one such climate-resilient food crop that is less sensitive to climate change vulnerabilities and also an important staple food in many parts of Asia and Africa. It is a rainfed crop and provides many essential nutrients. Understanding sorghum’s sensitivity to climate change provides scope for improvement of the crop both in terms of quantity and quality and alleviates food and feed security in future climate change scenarios. Thus, the current review focused on understanding the sensitivity of sorghum crop to various stress events due to climate change and throws light on different crop improvement strategies available to pave the way for climate-smart agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelhalim TS, Kamal NM, Hassan AB (2019) Nutritional potential of wild sorghum: grain quality of Sudanese wild sorghum genotypes (Sorghum bicolor L. Moench). Food Sci Nutr 7(4):1529–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboubacar A, Moldenhauer KAK, McClung AM, Beighley DH, Hamaker BR (2006) Effect of growth location in the United States on amylose content, amylopectin fine structure, and thermal properties of starches of long grain rice cultivars. Cereal Chem 83:93–98

    Article  CAS  Google Scholar 

  • Adhikari U, Nejadhashemi AP, Woznicki SA (2015) Climate change and eastern Africa: a review of impact on major crops. Food Energy Secur 4:110–132

    Article  Google Scholar 

  • Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Ahmad R, Iqbal MA (2018) Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress—a review. J Plant Nutr 41:1734–1743

    Article  CAS  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35(1):81–91

    Article  CAS  Google Scholar 

  • Ahmed S, Nawata E, Sakuratani T (2002) Effects of waterlogging at vegetative and reproductive growth stages on photosynthesis, leaf water potential and yield in mungbean. Plant Prod Sci 5:117–123

    Article  Google Scholar 

  • Ali Q, Ashraf M, Anwar F (2010) Seed composition and seed oil antioxidant activity of maize under water stress. J Am Oil Chem Soc 87(10):1179–1187

    Article  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Ananda N, Vadlani PV, Prasad PV (2011) Evaluation of drought and heat stressed grain sorghum (Sorghum bicolor) for ethanol production. Ind Crops Prod 33(3):779–782

    Article  CAS  Google Scholar 

  • Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. Environ Sustain 2:95–96

    Article  Google Scholar 

  • Asaoka M, Okuno K, Sugimoto Y, Kawakami J, Fuwa H (1984) Effect of environmental temperature during development of rice plants on some properties of endosperm starch. Starch/Stärke 36:189–193

    Article  CAS  Google Scholar 

  • Assefa Y, Staggenborg SA, Prasad VP (2010) Grain sorghum water requirement and responses to drought stress: a review. Crop Manage 9(1):1–11

    Article  Google Scholar 

  • Baker JT, Boote KJ, Allen LH Jr (1995) Potential climate change effects on rice: carbon dioxide and temperature. In: Rosenzweig C (ed) Climate change and agriculture: analysis of potential international impacts, ASA Spec. Publ. No. 59. ASA, Madison, WI, pp 31–47

    Google Scholar 

  • Bekele WA, Fiedler K, Shiringani A, Schnaubelt D, Windpassinger S, Uptmoor R, Friedt W, Snowdon RJ (2014) Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant, Cell Environ 37(3):707–723

    Article  CAS  Google Scholar 

  • Bidinger FR, Hammer GL, Muchow RC (1996) The physiological basis of genotype by environment interaction in crop adaptation. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, UK, pp 329–347

    Google Scholar 

  • Bing YI, Zhou YF, Gao MY, Zhang Z, Yi HAN, Yang GD, Wenjuan XU, Huang RD (2014) Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. J Integr Agric 13(11):2399–2406

    Article  CAS  Google Scholar 

  • Blum A (2004) Sorghum physiology. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker Inc., NY, pp 141–223

    Google Scholar 

  • Blümmel M, Deshpande S, Kholova J, Vadez V (2015) Introgression of staygreen QLT’s for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crops Res 180:228–237

    Article  Google Scholar 

  • Boote KJ, Allen LH Jr, Prasad PVV, Baker JT, Gesch RW, Synder AM, Pan D, Thomas JMG (2005) Elevated temperature and CO2 impacts on pollinations, reproductive growth, and yield of several globally important crops. J Agric Meteorol (Tokyo) 60:469–474

    Article  Google Scholar 

  • Borrell AK, Hammer GL, Henzell RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Article  Google Scholar 

  • Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65(21):6251–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyles RE, Brenton Z, Kresovich S (2019) Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Plant J 97(1):19–39

    Article  CAS  PubMed  Google Scholar 

  • Brumm TJ, Hurburgh CR (2006) Changes in long-term soybean compositional patterns. J Am Oil Chem Soc 83:981–983

    Article  CAS  Google Scholar 

  • Burgess MS, Mehuys GR, Madramootoo CA (2002) Nitrogen dynamics of decomposing corn residue components under three tillage systems. Soil Sci Soc Am J 66(4):1350–1358

    Article  CAS  Google Scholar 

  • Burow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol Breed 28:391–402

    Article  Google Scholar 

  • Challinor A, Wheeler T, Craufurd P, Ferro C, Stephenson D (2007) Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric Ecosyst Environ 119:190–204

    Article  Google Scholar 

  • Chaudhuri UN, Burnett RB, Kirkham MB, Kanemasu ET (1986) Effect of carbon dioxide on sorghum yield, root growth, and water use. Agric For Meteorol 37:109–122

    Article  Google Scholar 

  • Chen J, Chopra R, Hayes C, Morris G, Marla S, Burke J, Xin Z, Burow G (2017) Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a Sorghum Association Panel. Plant Genome 10(2):1–15

    Article  CAS  Google Scholar 

  • Cheng W, Zhang G, Zhao G, Yao H, Xu H (2003) Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Res 80:245–252

    Article  Google Scholar 

  • Chiluwal A (2018) Physiological and genetic characterization of sorghum exposed to early season chilling and terminal heat and drought stress. Doctoral dissertation. Kansas State University

  • Chiluwal A, Bheemanahalli R, Perumal R, Asebedo AR, Bashi E, Lamsal A, Sebela D, Shetty NJ, Jagadish SVK (2018) Integrated aerial and destructive phenotyping differentiates chilling stress tolerance during early seedling growth in sorghum. Field Crops Res 227:1–10

    Article  Google Scholar 

  • Cisse N, Ejeta G (2003) Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci 43:824–828

    Article  Google Scholar 

  • Cowan MF, Blomstedt CK, Norton SL, Henry RJ, Møller BL, Gleadow R (2020) Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum. Environ Exp Bot 169:103884

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129(4):1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craufurd PQ, Qi A, Ellis RH, Summerfield RJ, Roberts EH, Mahalakshmi V (1998) Effect of temperature on time to panicle initiation and leaf appearance in sorghum. Crop Sci 38:942–947

    Article  Google Scholar 

  • Da Silva LS (2012) Transgenic sorghum: effects of altered kafirin synthesis on kafirin polymerisation, protein quality, protein body structure and endosperm texture, Doctoral dissertation, University of Pretoria

  • Dai Z, Yin Y, Wang Z (2009) Starch granule size distribution from seven wheat cultivars under different water regimes. Cereal Chem 86:82–87

    Article  CAS  Google Scholar 

  • Dang JMC, Copeland L (2004) Genotype and environmental influences on pasting properties of rice flour. Cereal Chem 81:486–489

    Article  CAS  Google Scholar 

  • De Souza AP, Cocuron JC, Garcia AC, Alonso AP, Buckeridge MS (2015) Changes in whole-plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought. Plant Physiol 169(3):1755–1765

    PubMed  PubMed Central  Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51(342):89–97

    Article  CAS  PubMed  Google Scholar 

  • Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M (2005) Natural disaster hotspots: a global risk analysis. World Bank, Washington

    Book  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Murugan M, Perumal M, Reddy UK (2014) Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ Exp Bot 100:43–54

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Perumal R, Jagadish SVK, Ciampitti IA, Welti R, Prasad PVV (2018) Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ 41:1065–1082

    Article  CAS  PubMed  Google Scholar 

  • Downes RW (1972) Effect of temperature on the phenology and grain yield of Sorghum bicolor. Aust J Agric Res 23:585–594

    Article  Google Scholar 

  • Duressa D, Weerasoriya D, Bean SR, Tilley M, Tesso T (2018) Genetic basis of protein digestibility in grain sorghum. Crop Sci 58(6):2183–2199

    Article  CAS  Google Scholar 

  • Ebadi MR, Pourreza J, Jamalian J, Edriss MA, Samie AH, Mirhadi SA (2005) Amino acid content and availability in low, medium and high tannin sorghum grain for poultry. Int J Poult Sci 4(1):27–31

    Google Scholar 

  • Eck HV, Musick JC (1979) Plant water stress effect on irrigated sorghum. I. Effect on yield. Crop Sci 19:586–592

    Google Scholar 

  • Elkonin LA, Italianskaya JV, Fadeeva IY, Bychkova VV, Kozhemyakin VV (2013) In vitro protein digestibility in grain sorghum: effect of genotype and interaction with starch digestibility. Euphytica 193(3):327–337

    Article  CAS  Google Scholar 

  • Elkonin LA, Italianskaya JV, Domanina IV, Selivanov NY, Rakitin AL, Ravin NV (2016) Transgenic sorghum with improved digestibility of storage proteins obtained by agrobacterium-mediated transformation. Russ J Plant Physiol 63(5):678–689

    Article  CAS  Google Scholar 

  • Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ercoli L, Mariotti M, Masoni A, Arduini I (2004) Growth responses of sorghum plants to chilling temperature and duration of exposure. Eur J Agron 2:93–103

    Article  Google Scholar 

  • Fabian A, Jager K, Rakszegi M, Barnabas B (2011) Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress. Plant Cell Rep 30:551–563

    Article  CAS  PubMed  Google Scholar 

  • FAO (2002) Crop water management. Online. AGLW Water Management Group, United Nations FAO, Rome, Italy

    Google Scholar 

  • FAO (2005) Special event on impact of climate change, pests and diseases on food security and poverty reduction. Background document. In: 31st session of the Committee on World Food Security FAO, Rome, Italy. ftp://ftp.fao.org/docrep/fao/meeting/009/j5411e.pdf

  • FAO (2008) Press release: Agriculture in the near east likely to suffer from climate change. Rome/Cairo, 3 March 2008. http://www.fao.org/newsroom/en/news/2008/1000800/index.html

  • Fatima Z, Ahmed M, Hussain M, Abbas G, Ul-Allah S, Ahmad S, Ahmed N, Ali MA, Sarwar G, ul Haque E, Iqbal P (2020) The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci Rep 10(1):1–21

    Article  CAS  Google Scholar 

  • Fergason VL, Zuber MS (1962) Influence of environment on amylose content of maize endosperm. Crop Sci 2(3):209–211

    Article  CAS  Google Scholar 

  • Fernandez MGS, Schoenbaum GR, Goggi AS (2015) Novel germplasm and screening methods for early cold tolerance in sorghum. Crop Sci 54:2631–2638

    Article  Google Scholar 

  • Fischer G, Shah M, Tubiello FN, van Velthuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment of agriculture, 1990–2080. Phil Trans R Soc B 360:2067–2083

    Article  PubMed  PubMed Central  Google Scholar 

  • Forbes GA, Ziv O, Frederiksen RA (1987) Resistance in sorghum to seedling disease caused by Pythium arrhenomanes. Plant Dis 71:145–148

    Article  Google Scholar 

  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540

    Article  CAS  Google Scholar 

  • Franks CD, Burow GB, Burke JJ (2006) A comparison of US and Chinese sorghum germplasm for early season cold tolerance. Crop Sci 46:1371–1376

    Article  Google Scholar 

  • Garrity D, O’Toole J (1994) Screening rice for drought resistance at the reproductive phase. Field Crops Res 39:99–110

    Article  Google Scholar 

  • Gibson LR, Mullen RE (1996) Soybean seed quality reductions by high day and night temperature. Crop Sci 36:1615–1619

    Article  Google Scholar 

  • Gilding E, Frere CH, Cruickshank A, Rada AK, Prentis PJ, Mudge AM, Mace ES, Jordan DR, Godwin ID (2013) Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nat Commun 4(1):1–6

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  • Gunaratne A, Bentota A, Cai YZ, Collado L, Corke H (2011a) Functional, digestibility, and antioxidant properties of brown and polished rice flour from traditional and new-improved varieties grown in Sri Lanka. Starch/Stärke 63(8):485–492

    Article  CAS  Google Scholar 

  • Gunaratne A, Ratnayaka UK, Sirisena N, Ratnayaka J, Kong X, Arachchi LV, Corke H (2011b) Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour. Starch/Stärke 63:283–290

    Article  CAS  Google Scholar 

  • Habyarimana E, Dall’Agata M, De Franceschi P, Baloch FS (2019) Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models. PLoS ONE 14(12):e0225979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer GL, Broad IJ (2003) Genotype and environment effects on dynamics of harvest index during grain filling in sorghum. Agron J 95:199–206

    Article  Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58(2):327–338

    Article  CAS  PubMed  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Henzell RG, Hare BR, Jordan DR, Fletcher DS, McCosker AN, Bunker G, Persley DS (2010) Sorghum breeding in Australia: public and private endeavours. In: Borrell AK, Henzell RG (eds) Proceedings of the 4th Australian Sorghum Conference. Kooralbyn, Australia

  • Hicks C, Tuinstra MR, Pedersen JF, Dowell FE, Kofoid KD (2002) Genetic analysis of feed quality and seed weight of sorghum inbred lines and hybrids using analytical methods and NIRS. Euphytica 127(1):31–40

    Article  CAS  Google Scholar 

  • Hurburgh CR, Brumm TJ, Guinn JM, Hartwig RA (1990) Protein and oil patterns in U.S. and world soybean markets. J Am Oil Chem Soc 67:966–973

    Article  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, DuPont FM (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Impa SM, Perumal R, Bean SR, Sunoj VJ, Jagadish SK (2019) Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. J Cereal Sci 86:124–131

    Article  CAS  Google Scholar 

  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Food and Agriculture Organization (FAO) of the United Nations (1996) The World Sorghum and Millet Economies: Facts, Trends and Outlook; Food and Agriculture Organization: Rome, Italy. Available online: http://oar.icrisat.org/1024/

  • Inuyama S, Musick JT, Dusek DA (1976) Effect of plant water deficit at various growth stages on growth, grain yield and leaf water potential of irrigated grain sorghum. Proc Crop Sci Soc Jpn 45:298–307

    Article  Google Scholar 

  • IPCC-Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis report. https://www.ipcc.ch/report/ar4/syr/ Accessed on January 19, 2021

  • Jain M, Prasad PVV, Boote KJ, Allen LH Jr, Chourey PS (2007) Effect of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67–79

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson VA, Schmidt JW, Mattern PJ (1968) Cereal breeding for better protein impact. Econ Bot 22:16–25

    Article  Google Scholar 

  • Johnson WB, Ratnayake WS, Jackson DS, Lee KM, Herrman TJ, Bean SR, Mason SC (2010) Factors affecting the alkaline cooking performance of selected corn and sorghum hybrids. Cereal Chem 87(6):524–531

    Article  CAS  Google Scholar 

  • Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics 15(1):456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci 52(3):1153–1161

    Article  Google Scholar 

  • Kadam S, Abril A, Dhanapal AP, Koester RP, Vermerris W, Jose S, Fritschi FB (2017) Characterization and regulation of aquaporin genes of sorghum [Sorghum bicolor (L.) Moench] in response to waterlogging stress. Front Plant Sci 8:862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapanigowda MH, Perumal R, Aiken RM, Herald TJ, Bean SR, Little CR (2013) Analyses of sorghum (Sorghum bicolor (L.) Moench) lines and hybrids in response to early-season planting and cool conditions. Can J Plant Sci 93:773–784

    Article  Google Scholar 

  • Kassahun B, Bidinger FR, Hash CT, Kuruvinashetti MS (2010) Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica 172(3):351–362

    Article  Google Scholar 

  • Kaufman RC, Wilson JD, Bean SR, Galant AL, Perumal RR, Tesso T, Herald T, Shi YC (2018) Influence of genotype× location interaction on grain sorghum grain chemistry and digestibility. Agron J 110(5):1681–1688

    Article  CAS  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Khizzah BW, Miller FR, Newton RJ (1993) Inheritance and heritability of heat tolerance in several sorghum cultivars during the reproductive phase. Afr Crop Sci J 1(2)

  • Kimani W, Zhang LM, Wu XY, Hao HQ, Jing HC (2020) Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics 21(1):112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiseleva VI, Tester RF, Wasserman LA, Krivandin AV, Popov AA, Yuryev VP (2003) Influence of growth temperature on the structure and thermodynamic parameters of barley starches. Carbohydr Polym 51:407–415

    Article  CAS  Google Scholar 

  • Knoll J, Ejeta G (2008) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116:541–553

    Article  PubMed  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Krupa KN, Dalawai N, Shashidhar HE, Harinikumar KM (2017) Mechanisms of drought tolerance in Sorghum: a review. Int J Pure Appl Biosci 5(4):221–237

    Article  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23(6):513–522

    Article  CAS  PubMed  Google Scholar 

  • Labuschagne MT, Elago O, Koen E (2009) The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. J Cereal Sci 49:184–189

    Article  CAS  Google Scholar 

  • Leakey AD (2009) Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc R Soc B Biol Sci 276(1666):2333–2343

    Article  CAS  Google Scholar 

  • Li EP, Hasjim J, Singh V, Tizzotti M, Godwin ID, Gilbert RG (2013a) Insights into sorghum starch biosynthesis from structure changes induced by different growth temperatures. Cereal Chem 90:223–230

    Article  CAS  Google Scholar 

  • Li YF, Wu Y, Hernandez-Espinosa N, Peña RJ (2013b) Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters. J Cereal Sci 57(3):398–404

    Article  Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late- planted soybean. Crop Sci 38:1576–1584

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Guo W, Jiang Z, Pu H et al (2011) Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci 149:159–169

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Campbell BC, Godwin ID (2014) Sorghum genetic transformation by particle bombardment. Cereal genomics. Humana Press, Totowa, NJ, pp 219–234

    Chapter  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Lu TJ, Jane JL, Keeling PL, Singletary GW (1996) Maize starch fine structures affected by ear developmental temperature. Carbohydr Res 282:157–170

    Article  CAS  Google Scholar 

  • Mace E, Singh V, Van Oosterom E, Hammer G, Hunt C, Jordan D (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench). co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  CAS  PubMed  Google Scholar 

  • Maiti RK (1996) Sorghum science. Science Publishers, Lebanon, NH

    Google Scholar 

  • Majora DJ, Hammana WM, Rooda SB (1982) Effects of short-duration chilling temperature exposure on growth and development of sorghum. Field Crops Res 5:129–136

    Article  Google Scholar 

  • Manjarrez-Sandoval P, Gonzalez-Hernandez AV, Mendoza-Onofret EL, Engleman EM (1989) Drought stress effects on the grain-yield and panicle development of sorghum. Can J Plant Sci 69:631–641

    Article  Google Scholar 

  • Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  PubMed  Google Scholar 

  • Marla SR, Burow G, Chopra R, Hayes C, Olatoye MO, Felderhoff T, Hu Z, Raymundo R, Perumal R, Morris GP (2019) Genetic architecture of chilling tolerance in sorghum dissected with a nested association mapping population. G3 Genes Genomes Genet 9(12):4045–4057

  • Maulana F (2011) Analysis of cold tolerance in sorghum [Sorghum bicolor (L.) Moench]. Doctoral dissertation. Kansas State University

  • Maulana F, Tesso TT (2013) Cold temperature episode at seedling and flowering stages reduces growth and yield components in sorghum. Crop Sci 53:564–574

    Article  Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25:441–451

    Article  Google Scholar 

  • McWilliams D (2003) Drought strategies for corn and grain sorghum. Coop Ext. Circ. 580. New Mexico State Univ., Las Cruces, NM

  • Miller FR, Prihoda KL, Rooney LW, Rosenow DT, Waniska RD (1996) Registration of a food quality sorghum restorer parent, Tx2907. Crop Sci 36:479

    Article  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crops Res 145:21–32

    Article  Google Scholar 

  • Mitsui T, Shiraya T, Kaneko K, Wada K (2013) Proteomics of rice grain under high temperature stress. Front Plant Sci 4:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Moritz JS, Parsons AS, Buchanan NP, Calvalcanti WB, Cramer KR, Beyer RS (2005) Effect of gelatinizing dietary starch through feed processing on zero- to three-week broiler performance and metabolism. J Appl Poult Res 14:47–54

    Article  CAS  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Babu V, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2018) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42:6–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mudge SR, Campbell BC, Mustapha NB, Godwin ID (2016) Genomic approaches for improving grain quality of sorghum. In: Rakshit S, Wang Y-H (eds) The sorghum genome. Springer, Cham, pp 189–205

    Chapter  Google Scholar 

  • Myllarinen P, Schulman AH, Salovaara H, Poutanen K (1998) The effect of growth temperature on gelatinization properties of barley starch. Acta Agric Scand B Soil Plant Sci 48:85–90

    CAS  Google Scholar 

  • Naeve SL, Huerd SC (2008) Year, region, and temperature effects on the quality of Minnesota’s soybean crop. Agron J 100:690–695

    Article  Google Scholar 

  • Nagaraju M, Sudhakar Reddy P, Anil Kumar S, Srivastava RK, Kavi Kishor PB, Rao DM (2015) Genome-wide scanning and characterization of Sorghum bicolor L. heat shock transcription factors. Curr Genomics 16(4):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen CT, Singh V, van Oosterom EJ, Chapman SC, Jordan DR, Hammer GL (2013) Genetic variability in high temperature effects on seed-set in sorghum. Funct Plant Biol 40:439–448

    Article  PubMed  Google Scholar 

  • Njuguna VW, Cheruiyot EK, Mwonga S, Rono JK (2018) Effect of genotype and environment on grain quality of sorghum (Sorghum bicolor L. Moench) lines evaluated in Kenya. Afr J Plant Sci 12(12):324–330

    Article  CAS  Google Scholar 

  • Orchard PW, Jessop RS (1984) The response of sorghum and sunflower to short-term waterlogging. I. Effects of stage of development and duration of waterlogging on growth and yield. Plant Soil 81:119–132

    Article  Google Scholar 

  • Orchard PW, Jessop RS (1985) The response of sorghum and sunflower to short-term waterlogging. II. Root growth effects. Plant Soil 88:421–430

    Article  Google Scholar 

  • Ostmeyer T, Bheemanahalli R, Srikanthan D, Bean S, Peiris KH, Madasamy P, Perumal R, Jagadish SK (2020) Quantifying the agronomic performance of new grain sorghum hybrids for enhanced early-stage chilling tolerance. Field Crops Res 258:107955

    Article  Google Scholar 

  • Ottman MJ, Kimball BA, Pinter PJ Jr, Wall GW, Vanderlip RL, Leavitt SW, LaMorte RL, Matthias AD, Brooks TJ (2001) Elevated CO2 effects on sorghum growth and yield at high and low soil water content. New Phytol 150:261–273

    Article  Google Scholar 

  • Pallas JE Jr (1965) Transpiration and stomatal opening with changes in carbon content of the air. Science 147:171–173

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agr Res 55:895–906

    Article  Google Scholar 

  • Pang B, Zhang K, Kisekka I, Bean S, Zhang M, Wang D (2018) Evaluating effects of deficit irrigation strategies on grain sorghum attributes and biofuel production. J Cereal Sci 79:13–20

    Article  Google Scholar 

  • Pardales JR Jr, Kono Y, Yamauchi A (1991) Response of the different root system components of sorghum to incidence of waterlogging. Environ Exp Bot 31:107–115

    Article  Google Scholar 

  • Pazdernik DL, Halgerson PSJ, JL, Orf JH, (1996) Effect of temperature and genotype on the crude glycinin fraction (11S) of soybean and its analysis by near-infrared reflectance spectroscopy (near-IRS). J Agric Food Chem 44:2278–2281

    Article  CAS  Google Scholar 

  • Peacock JM (1982) Response and tolerance of sorghum to temperature stress. Sorghum in the Eighties: Proceedings of the International Symposium on Sorghum. 2-7 Nov 81. International Crops Research lnstltute for the Semi-Arid Tropics, Patancheru, A.P. India

  • Pedersen JF, Bean SR, Graybosch RA, Park SH, Tilley M (2005) Characterization of waxy grain sorghum lines in relation to granule bound starch synthase. Euphytica 144:51–156

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306(1):57–67

    Article  CAS  Google Scholar 

  • Peng W, Berry EM, Ferranti P, Berry E, Anderson J (2019) The concept of food security. Encycl Food Secur Sustainability 2:1–7

    Google Scholar 

  • Perry SW, Krieg DR, Hutmacher RB (1983) Photosynthetic rate control in cotton. Plant Physiol 73:662–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piikki K, De Temmerman L, Ojanpera K, Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28:245–254

    Article  CAS  Google Scholar 

  • Polthanee A (1997) Indigenous farming practices and knowledge in Northeast Thailand. Khon Kaen Publishing, Khon Kaen

    Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ, Wheeler TR (2000) Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J Exp Bot 51:777–784

    CAS  PubMed  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, Thomas JMG (2003) Supra-optimal temperatures are detrimental to peanut (Arachis hypogaea L) reproductive processes and yield at ambient and elevated carbon dioxide. Glob Change Biol 9:1775–1787

    Article  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917

    Article  Google Scholar 

  • Prasad PVV, Djanaguiraman M, Perumal R, Ciampitti IA (2015) Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Front Plant Sci 6:820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Promkhambut A, Polthanee A, Akkasaeng C, Younger A (2011) Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (Sorghum bicolor L. Moench) as affected by flooding at different growth stages. Aust J Crop Sci 5(8):954

    Google Scholar 

  • Rajkumar BF, Kavil SP, Girma Y, Arun SS, Dadakhalandar D, Gurusiddesh BH, Patil AM, Thudi M, Bhairappanavar SB, Narayana YD, Krishnaraj PU, Khadi BM, Kamatar MY (2013) Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants 19:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram G, Sharma AD (2013) In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor). Int J Bioinf Res Appl 9(4):349–364

    Article  CAS  Google Scholar 

  • Ray SS, Dadhwal VK, Navalgund RR (2002) Performance evaluation of an irrigation command area using remote sensing: a case study of Mahi command, Gujarat, India. Agric Water Manage 56(2):81–91

    Article  Google Scholar 

  • Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, Quiroz R, Hareau G, Wolf J (2018) Climate change impact on global potato production. Eur J Agron 100:87–98

    Article  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  PubMed Central  Google Scholar 

  • Reddy BVS, Sharma HC, Thakur RP, Ramesh S, Ashok Kumar A (2007) Characterization of ICRISAT bred sorghum hybrid parents (Set II). Int Sorghum Millets Newslett 48:1–123

    Google Scholar 

  • Reynolds TW, Waddington SR, Anderson CL, Chew A, True Z, Cullen A (2015) Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur 7:795–822

    Article  Google Scholar 

  • Rhodes DH, Hoffmann L Jr, Rooney WL, Ramu P, Morris GP, Kresovich S (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L) Moench] germplasm. J Agric Food Chem 62(45):10916–10927

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18(1):1–8

    Article  CAS  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    Article  CAS  Google Scholar 

  • Rooney WL (2004) Sorghum improvement-integrating traditional and new technology to produce improved genotypes. Adv Agron 83:37–109

    Article  Google Scholar 

  • Rooney WL, Rooney LW, Awika J, Dykes L (2013) Registration of Tx3362 Sorghum germplasm. J Plant Regist 7:104–107

    Article  Google Scholar 

  • Rosenow DT, Clark LE (1995) Drought and lodging resistance for a quality sorghum crop. In: Proceedings of the 5th annual corn and sorghum industry research conference (Chicago, IL, 6–7 December 1995). American Seed Trade Association, Chicago, IL, pp 82–97

  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events—implications for food production, plant diseases, and pests. Global Change Hum Health 2:90–104

    Article  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Roy JP, Tschakert H, Waisman S, Abdul Halim P, Antwi-Agyei P, Dasgupta B, Hayward M, Kanninen D, Liverman C, Okereke PF, Pinho K, Riahi AG, Suarez Rodriguez (2018) Sustainable development, poverty eradication and reducing inequalities. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Geneva

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Article  Google Scholar 

  • Sarshad A, Talei D, Torabi M, Rafiei F, Nejatkhah P (2021) Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Appl Sci 3(1):1–12

    Article  Google Scholar 

  • Setter T, Belford B (1990) Waterlogging: how it reduces plant growth and how plants can overcome its effects. J Dept Agric Western Austr 31(2):51–55

    Google Scholar 

  • Shakoor N, Ziegler G, Dilkes BP, Brenton Z, Boyles R, Connolly EL, Kresovich S, Baxter I (2015) Integration of experiments across diverse environments identifies the genetic determinants of variation in Sorghum bicolor seed element composition. bioRxiv, p 019083

  • Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust J Agric Res 50:375–438

    Article  Google Scholar 

  • Singh S, Singh G, Singh P, Singh N (2008) Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chem 108:130–139

    Article  CAS  Google Scholar 

  • Singh S, Gupta AK, Gupta SK, Kaur N (2010) Effect of sowing time on protein quality and starch pasting characteristics in wheat (Triticum aestivum L.) genotypes grown under irrigated and rain-fed conditions. Food Chem 122:559–565

    Article  CAS  Google Scholar 

  • Singh V, Nguyen CT, van Oosterom EJ, Chapman SC, Jordan DR, Hammer GL (2015) Sorghum genotypes differ in high temperature responses for seed set. Field Crops Res 171:32–40

    Article  Google Scholar 

  • Singh V, Nguyen CT, Yang Z, Chapman SC, van Oosterom EJ, Hammer GL (2016) Genotypic differences in effects of short episodes of high-temperature stress during reproductive development in sorghum. Crop Sci 56:1561–1572

    Article  CAS  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2010) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34(1):71–82

    Article  CAS  Google Scholar 

  • Srivastava A, Kumar SN, Aggarwal PK (2010) Assessment on vulnerability of sorghum to climate change in India. Agric Ecosyst Environ 138(3–4):160–169

    Article  Google Scholar 

  • Stone LR, Schlegel AJ (2006) Yield-water supply relationship of grain sorghum and winter wheat. Agron J 98:1359–1366

    Article  Google Scholar 

  • Stone PJ, Wilson DR, Reid JB, Gillespie RN (2001) Water deficit effects on sweet corn. I. Water use, radiation use efficiency, growth, and yield. Austr J Agric Res 52(1):103–113

    Article  Google Scholar 

  • Sun MM, Abdula SE, Lee HJ, Cho YC, Han LZ, Koh HJ, Cho YG (2011) Molecular aspect of good eating quality formation in Japonica rice. PLoS ONE 6:e18385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svihus B, Uhlen AK, Harstad OM (2005) Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Anim Feed Sci Technol 122:303–320

    Article  CAS  Google Scholar 

  • Taleon V, Dykes L, Rooney WL, Rooney LW (2012) Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J Cereal Sci 56(2):470–475

    Article  CAS  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Global Change Biol 14(3):565–575

    Article  Google Scholar 

  • Terbea M, Vranceanu AV, Petcu E, Craiciu DS, Micut G (1995) Physiological response of sunflower plants to drought. Rom Agric Res 3:61–67

    Google Scholar 

  • Tesso T, Ejeta G, Chandrashekar A, Huang CP, Tandjung A, Lewamy M, Axtell JD, Hamaker BR (2006) A novel modified endosperm texture in a mutant high-protein digestibility/high-lysine grain sorghum (Sorghum bicolor (L.) Moench). Cereal Chem J 83:194–201

    Article  CAS  Google Scholar 

  • Tester RF (1997) Influence of growth conditions on barley starch properties. Int J Biol Macromol 21(1–2):37–45

    Article  CAS  PubMed  Google Scholar 

  • Tester RF, Karkalas J (2001) The effects of environmental conditions on the structural features and physico-chemical properties of starches. Starch/Stärke 53:513–519

    Article  CAS  Google Scholar 

  • Thitisaksakul M, Jimenez RC, Arias MC, Beckles DM (2012) Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci 56:67–80

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Thomas JMG, Boote KJ, Allen LH Jr, Gallo-Meagher M, Davis JM (2003) Elevated temperature and carbon dioxide effects on soybean seed germination and transcript abundance. Crop Sci 43:1548–1557

    Article  Google Scholar 

  • Tirfessa A, McLean G, Mace E, van Oosterom E, Jordan D, Hammer G (2020) Differences in temperature response of phenological development among diverse Ethiopian sorghum genotypes are linked to racial grouping and agroecological adaptation. Crop Sci 60(2):977–990

    Article  CAS  Google Scholar 

  • Tiryaki I, Andrews DJ (2001) Germination and seedling cold tolerance in sorghum: II. Parental lines and hybrids. Agron J 93:1391–1397

    Article  Google Scholar 

  • Tolk JA, Howell TA (2001) Measured and simulated evapotranspiration of grain sorghum with full and limited irrigation in three high plains soils. Trans ASAE 44:1553–1558

    Google Scholar 

  • Torbert HA, Prior SA, Rogers HH, Runion GB (2004) Elevated atmospheric CO2 effects on N fertilization in grain sorghum and soybean. Field Crops Res 88(1):7–67

    Article  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldbrough PM, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor L. Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Tuttle JR, Idris AM, Brown JK, Haigler CH, Robertson D (2008) Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol 148(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umaharan P, Ariyanayagam RP, Haque SQ (1997) Effect of short-term waterlogging applied at various growth phases on growth, development and yield in Vigna unguiculata. J Agr Sci 128:189–198

    Article  Google Scholar 

  • UN Report (2019) World population prospects—2019 highlights. https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html. Accessed on 23 January 2021

  • Vadez V, Krishnamurthy L, Hash CT, Upadhyaya HD, Borrell AK (2011) Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci 62(8):645–655

    Article  Google Scholar 

  • Van Bavel CHM (1974) Anti-transpirant action of carbon dioxide on intact sorghum plants. Crop Sci 14:208–212

    Article  Google Scholar 

  • Vinita J, Bhargava S, Streb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot 49(327):1715–1721

    Google Scholar 

  • Von Born P, Bernardo-Faura M, Rubio-Somoza I (2018) An artificial miRNA system reveals that relative contribution of translational inhibition to miRNA-mediated regulation depends on environmental and developmental factors in Arabidopsis thaliana. PLoS ONE 13(2):e0192984

    Article  CAS  Google Scholar 

  • Wong R, Mufloz OA, Mendoza LE (1983) Water stress effects on vegetative, reproductive and efficiency traits of sorghum varieties I in Spanish. Agrociencia 51:101–114

    Google Scholar 

  • Wong JH, Marx DB, Wilson JD, Buchanan BB, Lemaux PG, Pedersen JF (2010) Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain. Plant Sci 179(6):598–611

    Article  CAS  Google Scholar 

  • Wu X, Zhao R, Bean SR, Seib PA, McLaren JS, Madl RL, Tuinstra M, Lenz MC, Wang D (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem 84(2):130–136

    Article  CAS  Google Scholar 

  • Wu X, Zhao R, Liu L, Bean S, Seib PA, McLaren J, Madl R, Tuinstra M, Lenz M, Wang D (2008) Effects of growing location and irrigation on attributes and ethanol yields of selected grain sorghums. Cereal Chem 85(4):495–501

    Article  CAS  Google Scholar 

  • Wu G, Johnson SK, Bornman JF, Bennett SJ, Singh V, Simic A, Fang J (2016) Effects of genotype and growth temperature on the contents of tannin, phytate and in vitro iron availability of sorghum grains. PLoS ONE 11:1–12

    Google Scholar 

  • Xin Z, Aiken R, Burke J (2008) Genetic diversity of transpiration efficiency in sorghum. Field Crops Res 111:74–80

    Article  Google Scholar 

  • Yu S, Tian L (2018) Breeding major cereal grains through the lens of nutrition sensitivity. Mol Plant 11:23–30

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Tuinstra MR (2001) Genetic analysis of seedling growth under cold temperature stress in grain sorghum. Crop Sci 41:1438–1443

    Article  Google Scholar 

  • Yu J, Tuinstra MR, Claassen MM, Gordon WB, Witt MD (2004) Analysis of cold tolerance in sorghum under controlled environment conditions. Field Crops Res 85:21–30

    Article  Google Scholar 

  • Zaidi PH, Rafique S, Rai PK, Singh NN, Srinivasan G (2004) Tolerance to excess moisture in maize (Zea mays L.): susceptible crop growth stage and identification of tolerant genotypes. Field Crops Res 90:189–202

    Article  Google Scholar 

  • Zeng M, Morris CF, Batey IL, Wrigley CW (1997) Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem 74:63–71

    Article  CAS  Google Scholar 

  • Zhan X, Wang D, Tuinstra MR, Bean S, Seib PA, Sun XS (2003) Ethanol and lactic acid production as affected by sorghum genotype and location. Ind Crops Prod 18(3):245–255

    Article  CAS  Google Scholar 

  • Zhang F, Wang Y, Yu H, Zhu K, Zhang Z, Zou FLJ (2016) Effect of excessive soil moisture stress on sweet sorghum: physiological changes and productivity. Pak J Bot 48(1):1–9

    Google Scholar 

  • Zhang R, Zhou Y, Yue Z, Chen X, Cao X, Ai X, Jiang B, Xing Y (2019a) The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. PLoS ONE 14(7):e0219209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang RD, Zhou YF, Yue ZX, Chen XF, Cao X, Xu XX, Xing YF, Jiang B, Ai XY, Huang RD (2019b) Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica 57(4):1076–1083

    Article  CAS  Google Scholar 

  • Zhuo W, Lin X (1995) Effects of waterlogging at different growth stages on physiological characteristic and seed yield of winter rape (Brassica napus L.). Field Crops Res 44:103–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Keerthi Chadalavada: conducted literature search and drafted the manuscript; Ranjitha Kumari B.D and Senthil Kumar T: conceptualization and draft correction.

Corresponding author

Correspondence to Keerthi Chadalavada.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadalavada, K., Kumari, B.D.R. & Kumar, T.S. Sorghum mitigates climate variability and change on crop yield and quality. Planta 253, 113 (2021). https://doi.org/10.1007/s00425-021-03631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03631-2

Keywords

Navigation