Skip to main content

Advertisement

Log in

Different dehydrins perform separate functions in Physcomitrella patens

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Dehydrins, PpDHNA and PpDHNB from Physcomitrella patens provide drought and cold tolerance while PpDHNC shows antimicrobial property suggesting different dehydrins perform separate functions in P. patens.

The moss Physcomitrella patens can withstand extremes of environmental condition including abiotic stress such as dehydration, salinity, low temperature and biotic stress such as pathogen attack. Osmotic stress is inflicted under both cold and drought stress conditions where dehydrins have been found to play a significant protective role. In this study, a comparative analysis was drawn for the three dehydrins PpDHNA, PpDHNB and PpDHNC from P. patens. Our data shows that PpDHNA and PpDHNB play a major role in cellular protection during osmotic stress. PpDHNB showed several fold upregulation of the gene when P. patens was subjected to cold and osmotic stress in combination. PpDHNA and PpDHNB provide protection to enzyme lactate dehydrogenase under osmotic as well as freezing conditions. PpDHNC possesses antibacterial activity and thus may have a role in biotic stress response. Overexpression of PpDHNA, PpDHNB and PpDHNC in transgenic tobacco showed a better performance for PpDHNB with respect to cold and osmotic stress. These results suggest that specific dehydrins contribute to tolerance of mosses under different stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

LEA:

Late embryogenesis abundant

LB:

Luria–Bertani media

LDH:

Lactate dehydrogenase

CaMV 35S:

Cauliflower Mosaic Virus (CaMV) 35S promoter

MDA:

Malondialdehyde

PCR:

Polymerase chain reaction

MIC:

Minimum inhibitory concentration

BSA:

Bovine serum albumin

GST:

Glutathione S-transferase

HRP:

Horse radish peroxidase

PBS:

Phosphate buffer saline

BAP:

6-Benzyl aminopurine

NAA:

1-Napthalene acetic acid

ROS:

Reactive oxygen species

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss Physcomitrella patens. Molec Gen Genet 154:87–95

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Gallardo J, Navarrete A, Olave N, Martínez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant 118:262–269

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants in dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davis MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Frank W, Ratnadewi D, Reski R (2005) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394

    Article  CAS  PubMed  Google Scholar 

  • Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW (2012) Scanning electron microscopy. Current protocols in Microbiology. Chapter 2, Unit 2B 2. doi:10.1002/9780471729259.mc02b02s25

  • Halder T, Agarwal T, Ray S (2015) Isolation, cloning and characterization of a novel Sorghum dehydrin (SbDhn2) protein. Protoplasma. doi:10.1007/s00709-015-0901-7

    Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann N, Eicholz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, Tralman Baker E, Patel SN, Graether SP (2013) The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol 163:1376–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosova K, Vítámvás P, Prášil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity—what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343

    PubMed Central  PubMed  Google Scholar 

  • Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins: molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolajeva V, Liepina L, Petrina Z, Krumina G, Grube M, Muiznieks I (2012) Antibacterial activity of extracts from some bryophytes. Adv Microbiol 2(3):345–353

    Article  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Article  Google Scholar 

  • Rahman LN, Smith GS, Bamm VV, Voyer-Grant JA, Moffatt BA, Dutcher JR, Harauz G (2011) Phosphorylation of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 facilitates cation-induced conformational changes and actin assembly. Biochemistry 50:9587–9604

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Reynolds JA, Tanford C (1970) Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc Natl Acad Sci USA 66:1002–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinne PLH, Kaikuranta PLM, van der Plas LHW, van der Shoot C (1999) Dehydrins in cold acclimation apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source–sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Salamó IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S (2012) Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. Plant Sci 190:89–102

    Article  CAS  PubMed  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  CAS  PubMed  Google Scholar 

  • Saibi W, Abdeljalil S, Masmoudi K, Gargouri A (2012) Biocatalysts: beautiful creatures. Biochem Biophy Res Commun 426:289–293

    Article  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Svensson J, Ismail A, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JB (eds) Cell and molecular responses to stress. Elsevier Science, Amsterdam, pp 155–171

    Google Scholar 

  • Szabados v, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2009) Structure and function of intrinsically disordered proteins. CRC Press, Boca Raton

    Book  Google Scholar 

  • Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131:1800–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, Shen X, Wang T, Dong J (2012) Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol 195:124–135

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Lan J, Wang H, Li L, Cheng X, Liu G (2011) Rice dehydrin K-segments have in vitro antibacterial activity. Biochemistry (Moscow) 76:645–650

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants to S.R. from the Department of Science and Technology, Government of India. T.A. and G.U. thank the Department of Science and Technology, Government of India for Research Fellowships. T.H. thank the Council of Scientific and Industrial Research, Government of India for Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, T., Upadhyaya, G., Halder, T. et al. Different dehydrins perform separate functions in Physcomitrella patens . Planta 245, 101–118 (2017). https://doi.org/10.1007/s00425-016-2596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2596-1

Keywords

Navigation