Skip to main content
Log in

VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The DUF642 gene VqDUF642 , isolated from the Chinese grape species V. quinquangularis accession Danfeng-2, participates in berry development and defense responses against Erysiphe necator and Botrytis cinerea.

The proteins with domains of unknown function 642 (DUF642) comprise a large protein family according to cell wall proteomic analyses in plants. However, the works about functional characterization of DUF642s in plant development and resistance to pathogens are scarce. In this study, a gene encoding a DUF642 protein was isolated from Chinese grape V. quinquangularis accession Danfeng-2, and designated as VqDUF642. Its full-length cDNA contains a 1107-bp open reading frame corresponding to a deduced 368-amino acid protein. Multiple sequence alignments and phylogenetic analysis showed that VqDUF642 is highly homologous to one of the DUF642 proteins (VvDUF642) in V. vinifera. The VqDUF642 was localized to the cell wall of tobacco epidermal cells. Accumulation of VqDUF642 protein and VqDUF642 transcript abundance increased at the later stage of grape berry development in Danfeng-2. Overexpression of VqDUF642 in transgenic tomato plants accelerated plant growth and reduced susceptibility to Botrytis cinerea. Transgenic Thompson Seedless grapevine plants overexpressing VqDUF642 exhibited enhanced resistance to Erysiphe necator and B. cinerea. Moreover, VqDUF642 overexpression affected the expression of a couple of pathogenesis-related (PR) genes in transgenic tomato and grapevine upon pathogen inoculation. Taken together, these results suggest that VqDUF642 is involved in plant development and defense against pathogenic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrews P, Li S (1995) Cell wall hydrolytic enzyme activity during development of nonclimacteric sweet cherry (Prunus avium L.) fruit. J Hortic Sci 70:561–567

    Article  CAS  Google Scholar 

  • Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Article  CAS  PubMed  Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia VN, Perlman DH, Costello CE, McComb ME (2009) Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. Anal Chem 81:9819–9823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  PubMed  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2008) Grapes. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic temperate fruits and nuts. Wiley, Oxford, pp 189–232. doi:10.1002/9781405181099.k0407

    Chapter  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  CAS  PubMed  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. In: Plant Cell Walls. Springer, pp 311–340

  • Cantu D, Vicente A, Greve L, Dewey F, Bennett A, Labavitch J, Powell A (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. PNAS 105:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Biol 49:281–309

    Article  CAS  Google Scholar 

  • Chen XY, Kim ST, Cho WK, Rim Y, Kim S, Kim SW, Kang KY, Park ZY, Kim JY (2009) Proteomics of weakly bound cell wall proteins in rice calli. J Plant Physiol 166:675–685

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang Y (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Do Choi Y, Lee JS (2008) Antimicrobial activity of γ-thionin-like soybean SE60 in E. coli and tobacco plants. Biochem Biophys Res Commun 375:230–234

    Article  CAS  PubMed  Google Scholar 

  • Coombe B (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Article  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Bio 6:850–861

    Article  CAS  Google Scholar 

  • Dai L, Zhou Q, Li R, Du Y, He J, Wang D, Cheng S, Zhang J, Wang Y (2015) Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell, Tissue Organ Cult 121:397–412

    Article  CAS  Google Scholar 

  • de Assis SA, Lima DC, de Faria Oliveira OM (2001) Activity of pectinmethylesterase, pectin content and vitamin C in acerola fruit at various stages of fruit development. Food Chem 74:133–137

    Article  Google Scholar 

  • Del Bem LE, Vincentz MG (2010) Evolution of xyloglucan-related genes in green plants. BMC Evol Biol 10:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennison R, Hall C, Nettles V (1954) Pectin esterase activity of tomato fruits at different stage of maturity. Proc Annu Meet Am Soc Hort Sci Fla 51:17

    CAS  Google Scholar 

  • Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D (2009) An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol 149:1366–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Famiani F, Walker RP, Técsi L, Chen ZH, Proietti P, Leegood RC (2000) An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. J Exp Bot 51:675–683

    Article  CAS  PubMed  Google Scholar 

  • Frenkel C, Peters JS, Tieman DM, Tiznado ME, Handa AK (1998) Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J Biol Chem 273:4293–4295

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  • Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. PNAS 97:4535–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond-Kosack KE, Jones J (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He P, Wang Y, Wang G, Ren Z, He C (1991) The studies on the disease-resistance of Vitis wild species originated in China. Sci Agr Sinica 24:50–56

    Google Scholar 

  • Hobson G (1963) Pectinesterase in normal and abnormal tomato fruit. Biochem J 86:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongo S, Sato K, Yokoyama R, Nishitani K (2012) Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Barlet X, Deslandes L, Hirsch J, Feng DX, Somssich I, Marco Y (2008) Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS One 3:e2589

    Article  PubMed  PubMed Central  Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  Google Scholar 

  • Hultin H, Levine A (1965) Pectin methyl esterase in the ripening banana. J Food Sci 30:917–921

    Article  CAS  Google Scholar 

  • Irshad M, Canut H, Borderies G, Pont-Lezica R, Jamet E (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol 8:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs A, Dry I, Robinson S (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol 48:325–336

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  CAS  PubMed  Google Scholar 

  • Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218:516–524

    Article  CAS  PubMed  Google Scholar 

  • Konozy EH, Rogniaux H, Causse M, Faurobert M (2013) Proteomic analysis of tomato (Solanum lycopersicum) secretome. J Plant Res 126:251–266

    Article  CAS  PubMed  Google Scholar 

  • Lorenzini M, Mainente F, Zapparoli G, Cecconi D, Simonato B (2016) Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Food Chem 199:639–647

    Article  CAS  PubMed  Google Scholar 

  • Mansfield J, Hutson R (1980) Microscopical studies on fungal development and host responses in broad bean and tulip leaves inoculated with five species of Botrytis. Physiol Plant Pathol 17:131IN3137–136IN5144

    Article  Google Scholar 

  • McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpole G, Defernez M, Carpita NC, Hofte H, Ulvskov P (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811–821

    Article  CAS  PubMed  Google Scholar 

  • McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3'-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    Article  CAS  Google Scholar 

  • Méchin V, Damerval C, Zivy M (2007) Total protein extraction with TCA-acetone. In: Thiellement H, Zivy M, Damerval C, Méchin V (eds) Plant Proteomics. Springer, Berlin, pp 1–8. doi:10.1385/1-59745-227-0:1

    Google Scholar 

  • Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  • Minic Z, Jamet E, Négroni L, Der Garabedian PA, Zivy M, Jouanin L (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell HJ, Hall J, Barber MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol 104:551–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller K, Levesque-Tremblay G, Bartels S, Weitbrecht K, Wormit A, Usadel B, Haughn G, Kermode AR (2013) Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiol 161:305–316

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negri AS, Prinsi B, Scienza A, Morgutti S, Cocucci M, Espen L (2008) Analysis of grape berry cell wall proteome: a comparative evaluation of extraction methods. J Plant Physiol 165:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Nunan KJ, Davies C, Robinson SP, Fincher GB (2001) Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214:257–264

    Article  CAS  PubMed  Google Scholar 

  • Pavloušek P (2007) Evaluation of resistance to powdery mildew grapevine genetic resources. J Cent Eur Agric 8:105–114

    Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Phan TD, Bo W, West G, Lycett GW, Tucker GA (2007) Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol 144:1960–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    Article  CAS  PubMed  Google Scholar 

  • Powell AL, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB (2003) Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. J Agric Food Chem 51:7450–7455

    Article  CAS  PubMed  Google Scholar 

  • Prasanna V, Prabha T, Tharanathan R (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci 47:1–19

    Article  CAS  Google Scholar 

  • Pressey R (1997) Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochemistry 44:1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YS, Kirkpatrick R, Liu J, Jones SJ (2006) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29:1545–1570

    Article  PubMed  Google Scholar 

  • Ribeiro J, Pereira CS, Soares N, Vieira A, Feijó J, Jackson P (2006) The contribution of extensin network formation to rapid, hydrogen peroxide-mediated increases in grapevine callus wall resistance to fungal lytic enzymes. J Exp Bot 57:2025–2035

    Article  CAS  PubMed  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Davis C (2000) Molecular biology of grape berry ripening. Aust J Grape Wine Res 6:175–188

    Article  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23

    Article  CAS  PubMed  Google Scholar 

  • Shi J, He M, Cao J, Wang H, Ding J, Jiao Y, Li R, He J, Wang D, Wang Y (2014) The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera). Plant Physiol Biochem 74:24–32

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  CAS  PubMed  Google Scholar 

  • Stotz HU, Spence B, Wang Y (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71:131–143

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Matsumoto S, Cain P, Scott N (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    Article  CAS  PubMed  Google Scholar 

  • Tieman DM, Handa AK (1994) Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol 106:429–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Baarlen P, Staats M, Van Kan JA (2004) Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol Plant Pathol 5:559–574

    Article  Google Scholar 

  • van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse C (2006) Significance of inducible defense-related proteins in infected plants. Appl Phys A 44:135–162

    Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Lobo A, Roujol D, Zuñiga-Sánchez E, Albenne C, Piñero D, de Buen AG, Jamet E (2012) The highly conserved spermatophyte cell wall DUF642 protein family: phylogeny and first evidence of interaction with cell wall polysaccharides in vitro. Mol Phylogenet Evol 63:510–520

    Article  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69–82

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Schwaninger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136

    Google Scholar 

  • Wang Y, He P (1997) Study on inheritance of leaves’ resistance to powdery mildew in Chinese native wild. Vitis 30:19–25

    Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34:159–164

    Google Scholar 

  • Wang L, Liang W, Xing J, Tan F, Chen Y, Huang L, Cheng C, Chen W (2013) Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J Proteome Res 12:5124–5136

    Article  CAS  PubMed  Google Scholar 

  • Waters DL, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genom 5:40–58

    Article  CAS  Google Scholar 

  • Yuan C, Lazarowitz SG, Citovsky V (2016) Identification of a functional plasmodesmal localization signal in a plant viral cell-to-cell-movement protein. MBIO 7:e02015–e02052

    Article  Google Scholar 

  • Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G (2012) Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless. Plant Cell Tissue Organ Cult 118:157–168

    Article  CAS  Google Scholar 

  • Zhou Q, Du Y, Cheng S, Li R, Zhang J, Wang Y (2015) Resveratrol derivatives in four tissues of six wild Chinese grapevine species. N Z J Crop Hortic Sci 43:1–9

    Article  CAS  Google Scholar 

  • Zhu Z, Shi J, He M, Cao J, Wang Y (2012) Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata. Biotechnol Lett 34:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga-Sánchez E, Soriano D, Martínez-Barajas E, Orozco-Segovia A, Gamboa-deBuen A (2014) BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development. BMC Plant Biol 14:338

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China. The research was done with Grants from the National Natural Science Foundation of China (Grant No. 31372039). The authors thank Dr. M. A. WALKER, Department of Viticulture and Enology, University of California, Davis, California, USA for helpful suggestions and critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5392 kb)

Supplementary material 2 (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Wang, Y. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. Planta 244, 1075–1094 (2016). https://doi.org/10.1007/s00425-016-2569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2569-4

Keywords

Navigation