Skip to main content
Log in

Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice.

For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida E, Gossele V, Muller CG, Dockx J, Reynaerts A, Botterman J, Krebbers E, Timko MP (1989) Transgenic expression of two marker genes under the control of an Arabidopsis rbcS promoter: sequences encoding the Rubisco transit peptide increase expression levels. Mol Gen Genet 218:78–86

    Article  Google Scholar 

  • Bakhsh A, Siddique S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74

    Article  CAS  Google Scholar 

  • Bala A, Roy A, Das A, Chakraborti D, Das S (2013) Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. BMC Biotechnol 13:88. doi:10.1186/1472-6750-13-88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243:467–472

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya J, Chowdhury AH, Ray S, Jha JK, Das S, Gayen S, Chakraborty A, Mitra J, Maiti MK, Basu A, Sen SK (2012) Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants. Plant Cell Rep 31:271–279

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya J, Chakraborty A, Roy S, Pradhan S, Mitra J, Chakraborty M, Manna A, Sikdar N, Chakraborty S, Sen SK (2015) Genetic transformation of cultivated jute (Corchorus capsularis L.) by particle bombardment using apical meristem tissue and development of stable transgenic plant. Plant Cell Tiss. Organ. doi:10.1007/s11240-014-0702-2

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chelliah S, Gunathilagaraj K (2009) Pest management in rice-current status and future prospects. http://www.rkmp.co.in. Accessed 16 Mar 2015

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium transformed rice plants expression synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci 95:2767–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong-Perez B, Kosky RG, Reyes M, Rojas L, Ocana B, Tejeda M, Perez B, Angenon G (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 159:265–273

    Article  CAS  PubMed  Google Scholar 

  • Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre/lox system controlled by an embryo specific promoter. Plant Mol Biol 83:143–152

    Article  PubMed  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  • Coppoolse ER, De Vroomen MJ, Roelofs D, Smit J, Van Gennip F, Hersmus BJM, Nijkamp HJJ, Van Haaren MJJ (2003) Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol 51:263–279

    Article  CAS  PubMed  Google Scholar 

  • Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27:733–743

    Article  PubMed  Google Scholar 

  • Dandapat A, Bhattacharyya J, Gayen S, Chakraborty A, Banga A, Mukherjee R, Mandal CC, Hossain MA, Roy S, Basu A, Sen SK (2013) Variant cry1Ab entomocidal Bacillus thuringiensis toxin gene facilitates the recovery of an increased number of lepidopteran insect resistant independent rice transformants against yellow stem borer (Scirpophaga incertulus) inflicted damage. J Plant Biochem Biotechnol 23(1):81–92

    Article  Google Scholar 

  • Deist BR, Rausch MA, Fernandez-Luna MT, Adang MJ, Bonning BC (2014) Bt toxin modification for enhanced efficacy. Toxins 6:3005–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demont M, Chen M, Ye G, Stein AJ (2013) Rice. In: Smyth SJ, Castle D, Phillips PWB (eds) Handbook on agriculture, biotechnology and development. Edward Elgar Publishing, Northampton (Chapter 42)

    Google Scholar 

  • Doyle JJ, Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Durand-Morat A, Chavez EC, Wailes EJ (2015) GM rice commercialization and its impact on the global rice economy. SAEA Annual Meeting, Atlanta, Georgia, February 2–3

  • EFSA (2009) Consolidated presentation of the joint Scientific Opinion of the GMO and BIOHAZ panels on the “Use of Antibiotic Resistance Genes as Marker Genes in Genetically Modified Plants” and the scientific opinion of the GMO panel on “Consequences of the Opinion on the Use of Antibiotic Resistance Genes as Marker Genes in Genetically Modified Plants on Previous EFSA Assessments of Individual GM Plants”. EFSA J 1108:1–8

    Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci 93:5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Xu XL, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen ZC (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Nat Biotechnol 11:1151–1155

    Article  CAS  Google Scholar 

  • Gayen S, Hossain MA, Sen SK (2012) Identification of the bioactive core component of the insecticidal Vip3A toxin peptide of Bacillus thuringiensis. J Plant Biochem Biotechnol 21(Suppl 1):S128–S135. doi:10.1007/s13562-012-0148-8

    Article  Google Scholar 

  • Gayen S, Samanta MK, Hossain MA, Mandal CC, Sen SK (2015) A deletion mutant ndv200 of the Bacillus thuringiensis vip3BR insecticidal toxin gene is a prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insect damage. Planta. doi:10.1007/s00425-015-2309-1

    Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: cre-active tools for plant biotechnology. Trends Biotechnol 21:550–555

    Article  CAS  PubMed  Google Scholar 

  • Gore J, Leonard BR, Church CE, Cook DR (2002) Behavior of bollworm (Lepidoptera: Noctuidae) larvae on genetically engineered cotton. J Econ Entomol 95:763–769

    Article  CAS  PubMed  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  CAS  PubMed  Google Scholar 

  • Grantham R, Perrin P, Mouchiroud D (1986) Pattern of codon usage of different kinds of species. Oxf Surv Evol Biol 3:48–81

    Google Scholar 

  • Hoa TTC, Bong BB, Huq E, Hodge TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    Article  CAS  PubMed  Google Scholar 

  • James C (2014) Global status of commercialised biotech/GM crops. ISAAA Briefs ISAAA, New York (37)

    Google Scholar 

  • Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11:411–423

    Article  CAS  PubMed  Google Scholar 

  • Khattri A, Nandy S, Srivastava V (2011) Heat-inducible Cre-lox system for marker excision in transgenic rice. J Biosci 36:37–42

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2005) What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant Mol Bio 59:1–6

    Article  CAS  Google Scholar 

  • Kiani S, Mohamed BB, Shehzad K, Jamal A, Shahid MN, Shahid AA, Husnain T (2013) Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests. J Biotechnol 166:88–96

    Article  CAS  PubMed  Google Scholar 

  • Kim EH, Suh SC, Park BS, Shin KS, Kweon SJ, Han JE, Park SH, Kim YS, Kim JK (2009) Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta 230:397–405

    Article  CAS  PubMed  Google Scholar 

  • Kopertekh L, Schiemann J (2012) Elimination of transgenic sequences in plants by cre Gene expression, transgenic plants—Advances and Limitations, PhD. Yelda Ozden Çiftçi (ed), ISBN: 978-953-51-0181-9, InTech, Available from: http://www.intechopen.com/books/transgenic-plants-advances-andlimitations/elimination-of-transgenic-sequences-in-plants-by-cre-gene-expression

  • Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal Protein Vip3A differs from that of Cry1Ab δ endotoxin. Appl Environ Microbiol 69:4648–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Hallerman EM, Liu Q, Wu K, Peng Y (2015) The development and status of Bt rice in China. Plant Biotechnol J. doi:10.1111/pbi.12464

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) “GM-gene-deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or Cre recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Mandal CC, Gayen S, Basu A, Ghosh KS, Dasgupta S, Maiti MK, Sen SK (2007) Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel 20(12):599–606

    Article  CAS  PubMed  Google Scholar 

  • Matzke AJM, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  CAS  PubMed  Google Scholar 

  • Meszaros K, Eva C, Kiss T, Banyai J, Kiss E, Teglas F, Lang L, Karsai I, Tamas L (2014) Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible Cre/Lox system. Plant Mol Biol Rep. doi:10.1007/s11105-014-0830-1

    Google Scholar 

  • Miki B, Abdeen A, Manabe Y, MacDonald P (2009) Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol J 7:211–218

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:437–497

    Article  Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon use in plant genes. Nucl Acids Res 17:477–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo S (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Vet Sci Nutrit Nat Resour 4:1–23

    Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing CryIAc δ-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci 94:2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak MD, Khan Z (1994) Insect pests of rice. International Rice Research Institute, Los Banos. ISBN 971-22-0028-0

    Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, Mc Pherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay P, Schluter U, van Wyk S, Kunert KJ, Vorster BJ (2014) Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered 5(1):15–20

    Article  PubMed  Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Annu Rev Resour Econ 1:665–693

    Article  Google Scholar 

  • Ramessar K, Peremarti A, Gomez-Galera S, Naqvi S, Moralejo M, Munoz P, Capell T, Christou P (2007) Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res 16:261–280

    Article  CAS  PubMed  Google Scholar 

  • Raybould A, Vlachos D (2011) Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Res 20:599–611

    Article  CAS  PubMed  Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Selvapandiyan A, Arora N, Rajagopal R, Jalali SK, Venkatesan T, Singh SP, Bhatnagar RK (2001) Toxicity analysis of N- and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl Environ Microbiol 67(12):5855–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Chakraborti D, Mondal HA, Das S (2010) Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers. Plant Cell Rep 29:261–271

    Article  CAS  PubMed  Google Scholar 

  • Shu Q, Ye G, Cui H, Cheng X, Xiang Y, Wu D, Gao M, Xia Y, Hu C, Sardana R, Altosaar I (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breeding 6:433–439

    Article  CAS  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94

    Article  CAS  PubMed  Google Scholar 

  • Sreevathsa R, Solanke AU, Kumar PA (2015) Biotechnology for insect pest management in vegetable crops. Recent advancements in gene expression and enabling technologies in crop plants, Chapter 10. Springer, New York, pp 313–340

    Book  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy IBL (2012) Recent advances in development of marker free transgenic plants: regulation and biosafety concern. J Biosci 37:162–197

    Article  Google Scholar 

  • Van Rie J, McGaughey WH, Johnson DE, Barnett BD, Van Mellaert H (1990) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247:72–74

    Article  PubMed  Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14:605–614

    Article  CAS  PubMed  Google Scholar 

  • Wogerbauer MM (2007) Risk assessment of antibiotic resistance marker genes in genetically modified organisms. Forschungsberichte der Sektion IV, Band 5/2007:1–135

  • Wong EY, Hironaka CM, Fischhoff DA (1992) Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol Biol 20:81–93

    Article  CAS  PubMed  Google Scholar 

  • Yau Y-Y, Stewart CN Jr (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye GY, Shu QY, Cui HR, Hu C, Gao MW, Xia YW, Cheng X, Altosaar I (2000) A leaf-section bioassay for evaluating rice stem borer resistance in transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner. Bull Entomol Res 90:179–182

    Article  CAS  PubMed  Google Scholar 

  • Ye RJ, Huang HQ, Yang Z, Chen TY, Liu L, Li XH, Chen H, Lin YJ (2009) Development of insect resistant transgenic rice with Cry1C*-free endosperm. Pest Manag Sci 65:1015–1020

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Zhou F, Lin Y (2012) Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L ssp.). Plant Cell Rep 31:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Li YH, Zhang Y, Chen Y, Wu KM, Peng YF, Guo YY (2011) Seasonal expression of Cry1Ab and Cry1Ac proteins in transgenic rice lines and their resistance against striped rice borer Chilo suppressalis (Walker). Transgenic Plants Insects 40(5):1323–1330

    CAS  Google Scholar 

  • Zhao J-Z, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere appreciation for Partha Das and Sona Dogra for their assistance in generating the transgenic rice lines related to this study, Sudarshan Maity for maintenance and rearing of the genetic lines under outdoor cultural conditions. pX6-GFP plasmid DNA was a generous gift from Dr. N-H Chua, Rockefeller University, USA. Financial assistance from National Agricultural Innovation Project, Indian Council of Agricultural Research (NAIP/ICAR) in terms of grant support to Advanced Laboratory for Plant Genetic Engineering and fellowship to SP is thankfully acknowledged. Finally, the authors extend their sincere gratitude to the distinguished editor and the anonymous reviewers, whose incisive comments have helped immensely to improve the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Pradhan.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2535_MOESM1_ESM.jpg

Suppl. Fig. S1 Synthetic vip3BR sequence with chloroplast targeting signal (syn vip3BR) green portion: chloroplast targeting signal to target the gene product into chloroplast blue portion: 5′ portion of rubisco gene to allow proper processing of the signal peptide purple portion: codon optimized synthetic vip3BR gene (JPEG 7094 kb)

425_2016_2535_MOESM2_ESM.jpg

Suppl. Fig. S2 a Schematic map of syn vip3BR gene cassette carrying hptII marker gene, flanked by two direct-repeat (indicated by black arrows) of loxP sequences (pLHRV). Oligos used for cloning loxP containing hptII gene are indicated by red arrowheads. Blue arrowheads indicate locations of oligos used for PCR screening of syn vip3BR gene. Probe A indicates the radiolabeled probe used for Southern blot of plant lines carrying syn vip3BR gene b cre recombinase gene cassette, under Os Ubi1 promoter with syn bar as selection marker (pBUC). Violet arrowheads indicate oligos used for cloning of syn bar gene in place of hptII gene. Green arrowheads indicate oligos to screen plant lines for cre gene. Probe B indicates radiolabeled probe used for Southern blot of plant lines carrying cre gene (JPEG 2686 kb)

425_2016_2535_MOESM3_ESM.jpg

Suppl. Fig. S3 Spatial expression profile (leaf vs grain tissue) of the syn vip3BR gene in T1 rice lines a Normalized, relative expression level of syn vip3BR gene in T1 transgenic rice lines by quantitative RT-PCR analysis. Results are expressed as mean ± SD, for three biological replicates b Immunoblot of Syn vip3BR protein (Upper panel). Actin is used as loading control (Lower panel) (JPEG 2253 kb)

425_2016_2535_MOESM4_ESM.jpg

Suppl. Fig. S4 Molecular analysis of marker gene excision a, b, c Southern blot analysis of seven hptII negative T1F1 hybrid plants probed with syn vip3BR, cre and hptII gene specific probes, respectively. Lane PC represents in c PCR amplified and gel purified hptII gene, loaded in the amount 0.1 ng. Lane UC represents HindIII digested genomic DNA from untransformed control plants. Approximate molecular weight markers are indicated (JPEG 3386 kb)

Supplementary Table 1 List of oligonucleotides used in the study (DOC 44 kb)

425_2016_2535_MOESM6_ESM.doc

Supplementary Table 2 Inheritance of the hptII gene in the T1 progeny of pLHRV containing transgenic rice plants (DOC 29 kb)

425_2016_2535_MOESM7_ESM.doc

Supplementary Table 3 Inheritance of the syn bar gene in the T1 progeny of pBUC containing transgenic rice plants (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S., Chakraborty, A., Sikdar, N. et al. Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties. Planta 244, 789–804 (2016). https://doi.org/10.1007/s00425-016-2535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2535-1

Keywords

Navigation