Skip to main content
Log in

Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Rice heme oxygenase 2 (OsHO2) mutants are chlorophyll deficient with distinct tetrapyrrole metabolite and transcript profiles, suggesting a potential regulatory role of the stromal-localized OsHO2 in tetrapyrrole biosynthesis.

In plants, heme oxygenases (HOs) are classified into the subfamilies HO1 and HO2. HO1 are highly conserved plastid enzymes required for synthesizing the chromophore in phytochromes which mediate a number of light-regulated responses. However, the physiological and biochemical functions of HO2, which are distantly related to HO1, are not well understood, especially in crop plants. From a population of 60Coγ-irradiated rice mutants, we identified the ylc2 (young leaf chlorosis 2) mutant which displays a chlorosis phenotype in seedlings with substantially reduced chlorophyll content. Normal leaf pigmentation is gradually restored in older plants while newly emerged leaves remain yellow. Transmission electron microscopy further revealed defective chloroplast structures in the ylc2 seedlings. Map-based cloning located the OsYLC2 gene on chromosome 3 and it encodes the OsHO2 protein. The gene identification was confirmed by complementation and T-DNA mutant analyses. Subcellular localization and chloroplast fractionation experiments indicated that OsHO2 resides in the stroma. However, recombinant enzyme assay demonstrated that OsHO2 is not a functional HO enzyme. Analysis of tetrapyrrole metabolites revealed the reduced levels of most chlorophyll and phytochromobilin precursors in the ylc2 mutant. On the other hand, elevated accumulation of 5-aminolevulinic acid and Mg-protoporphyrin IX was observed. These unique metabolite changes are accompanied by consistent changes in the expression levels of the corresponding tetrapyrrole biosynthesis genes. Taken together, our work suggests that OsHO2 has a potential regulatory role for tetrapyrrole biosynthesis in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALA:

5-Aminoleuvlinic acid

BAC:

Bacterial artificial chromosome

BV:

Biliverdin

Car:

Carotenoid

Chl:

Chlorophyll

Chlide:

Chlorophyllide

EYFP:

Enhanced yellow fluorescent protein

His:

Histidine

HM:

Homozygous

HO:

Heme oxygenase

MgCH:

Mg chelatase

PΦB:

Phytochromobilin

Pchlide:

Protochlorophyllide

PG:

Plastoglobules

Proto IX:

Protoporphyrin IX

RT:

Reverse transcription

STS:

Sequence-tagged site

TEM:

Transmission electron microscopy

Urogen III:

Uroporphyrinogen III

WT:

Wild type

References

  • Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM (2011) GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell 23:1449–1467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andrés F, Galbraith DW, Talón M, Domingo C (2009) Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol 151:681–690

    Article  PubMed  PubMed Central  Google Scholar 

  • Balestrasse KB, Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2008) Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress. Biometals 21:433–441

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32:1855–1867

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci 96:6541–6546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD (2001) The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126:656–669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Montellano PRO, Wilks A (2000) Heme oxygenase structure and mechanism. Adv Inorg Chem 51:359–408

    Article  Google Scholar 

  • Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140:856–868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fu GQ, Jin QJ, Lin YT, Feng JF, Nie L, Shen WB, Zheng TQ (2011a) Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.). Appl Biochem Biotech 165:1253–1263

    Article  CAS  Google Scholar 

  • Fu GQ, Xu S, Xie YJ, Han B, Nie L, Shen WB, Wang R (2011b) Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated. Plant Physiol Biochem 49:792–799

    Article  PubMed  CAS  Google Scholar 

  • Gelly JC, Joseph AP, Srinivasan N, De Brevern AG (2011) iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res 39:18–23

    Article  Google Scholar 

  • Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N (2010) Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem J 425:425–434

    Article  PubMed  CAS  Google Scholar 

  • Han B, Xu S, Xie YJ, Huang JJ, Wang LJ, Yang Z, Zhang CH, Sun Y, Shen WB, Xie GS (2012) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184:63–74

    Article  PubMed  CAS  Google Scholar 

  • Harel E, Klein S (1972) Light dependent formation of δ-aminolevulinic acid in etiolated leaves of higher plants. Biochem Biophys Res Commu 49:364–370

    Article  CAS  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    Article  PubMed  CAS  Google Scholar 

  • Jin QJ, Feng JF, Sun Y, Cui WT, Han B, Xu S, Shen WB, Cui J (2012a) Characterization of a heme oxygenase-1 from tobacco that is involved in some abiotic stress responses. Int J Plant Sci 173:113–123

    Article  CAS  Google Scholar 

  • Jin QJ, Yuan XX, Cui WT, Han B, Feng JF, Xu S, Shen WB (2012b) Isolation and characterization of a heme oxygenase-1 gene from Chinese cabbage. Mol Biotechnol 50:8–17

    Article  PubMed  CAS  Google Scholar 

  • Katz JJ, Norris JR, Shipman LL, Thurnauer MC, Wasielewski MR (1978) Chlorophyll function in the photosynthetic reaction center. Annu Rev Biophys Bioeng 7:393–434

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeon JS, Jung KH, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42:310–316

    Article  CAS  Google Scholar 

  • Lee JY, Lee HS, Song JY, Jung YJ, Reinbothe S, Park YI, Lee SY, Pai HS (2013) Cell growth defect factor1/CHAPERONE-LIKE PROTEIN OF POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. Plant Cell 25:3944–3960

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Cao ZY, Shen WB, Cui J (2011) Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene 486:47–55

    Article  PubMed  CAS  Google Scholar 

  • Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006) The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. FEBS J 273:2594–2606

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Lau E, Lam MP, Chu H, Li S, Huang G, Guo P, Wang J, Jiang L, Chu IK (2010) OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function. New Phytol 187:83–105

    Article  PubMed  CAS  Google Scholar 

  • Matera KM, Zhou H, Migita CT, Hobert SE, Ishikawa K, Katakura K, Maeshima H, Yoshida T, Ikeda-Saito M (1997) Histidine-132 does not stabilize a distal water ligand and is not an important residue for the enzyme activity in heme oxygenase-1. Biochemistry 36:4909–4915

    Article  PubMed  CAS  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ, Cheesman MR, Leys D (2009) Heme and hemoproteins. In tetrapyrroles: birth, life and death. Warren MJ, Smith AG (eds) pp 160–183

  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol 130:1958–1966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salvi D, Rolland N, Joyard J, Ferro M (2008) Purification and proteomic analysis of chloroplasts and their sub-organellar compartments. Methods Mol Biol 432:19–36

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Zheng X, Li L, Lin W, Xie W, Yang J, Chen S, Jin W (2013) Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS One 8:e80107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants-an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Kobayashi K, Masuda T (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. The Arabidopsis Book 9:e0145

    Article  PubMed  PubMed Central  Google Scholar 

  • Terry MJ, Kendrick RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient Aurea and yellow-green-2 mutants of tomato. Plant Physiol 119:143–152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tripathy BC, Sherameti I, Oelmüller R (2010) Siroheme: an essential component for life on earth. Plant Signal Behav 5:14–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Ma F, Xu S, Zheng T, Wang R, Chen H, Shen W (2014) Cloning and characterization of a heme oxygenase-2 gene from rice (Oryza sativa L.), and its expression analysis in response to some abiotic stresses. Acta Physiol Plant 36:893–902

    Article  Google Scholar 

  • Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Ren Y, Lv J, Wang Y, Liu F, Zhou F, Zhao S, Chen S, Peng C, Zhang X (2013) Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta 237:279–292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Laboratory of Plant Molecular Genetics, the National Natural Science Foundation of China (grant no. 31171530), Zhejiang Provincial Natural Science Foundation of China (grant no. Y3100591), and the HKU Seed Funding for Basic Research (grant no. 201111159147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clive Lo or Hongjia Liu.

Additional information

Q. Li and F.-Y. Zhu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1116 kb)

Supplementary material 2 (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhu, FY., Gao, X. et al. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. Planta 240, 701–712 (2014). https://doi.org/10.1007/s00425-014-2116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2116-0

Keywords

Navigation