Skip to main content
Log in

Iodine contributes to osmotic acclimatisation in the kelp Laminaria digitata (Phaeophyceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Iodide (I) retained by the brown macroalga Laminaria digitata at millimolar levels, possesses antioxidant activities, but the wider physiological significance of its accumulation remains poorly understood. In its natural habitat in the lower intertidal, L. digitata experiences salinity changes and osmotic homeostasis is achieved by regulating the organic osmolyte mannitol. However, I may also holds an osmotic function. Here, impacts of hypo- and hypersaline conditions on I release from, and accumulation by, L. digitata were assessed. Additionally, mannitol accumulation was determined at high salinities, and physiological responses to externally elevated iodine concentrations and salinities were characterised by chl a fluorometry. Net I release rates increased with decreasing salinity. I was accumulated at normal (35 S A) and high salinities (50 S A); this coincided with enhanced rETRmax and qP causing pronounced photoprotection capabilities via NPQ. At 50 S A elevated tissue iodine levels impeded the well-established response of mannitol accumulation and prevented photoinhibition. Contrarily, low tissue iodine levels limited photoprotection capabilities and resulted in photoinhibition at 50 S A, even though mannitol was accumulated. The results indicate a, so far, undescribed osmotic function of I in L. digitata and, thus, multifunctional principles of this halogen in kelps. The osmotic function of mannitol may have been substituted by that of I under hypersaline conditions, suggesting a complementary role of inorganic and organic solutes under salinity stress. This study also provides first evidence that iodine accumulation in L. digitata positively affects photo-physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

chl a :

Chlorophyll a

DW:

Dry weight

E 50 :

Irradiance at which 50 % of NPQmax is attained

E k :

Light saturation coefficient of P/E curve

E PAR :

Irradiance in the photosynthetically active wavelength range of 400–700 nm

FW:

Fresh weight

F v/F m :

Maximum PSII efficiency measured after dark acclimation

NPQ:

Non-photochemical quenching of chl a fluorescence

P/E curve:

Photosynthesis vs. irradiance curve with rETR as a function of E PAR

PSII:

Photosystem II

qP :

Photochemical quenching of chl a fluorescence

rETR:

Relative electron transport rate through PSII

RGR:

Relative growth rate

S A :

Absolute salinity

vIPO:

Vanadium-dependent iodoperoxidase

References

  • Ar Gall E, Küpper FC, Kloareg B (2004) A survey of iodine content in Laminaria digitata. Bot Mar 47:30–37

    Google Scholar 

  • Ashu-Ayem ER, Nitschke U, Monahan C, Chen J, Darby SB, Smith PD, O’Dowd CD, Stengel DB, Venables SD (2012) Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in chamber experiments. Environ Sci Technol 46:10413–10421

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz C, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schumann R, Schubert H, Valentin KU, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    Article  CAS  Google Scholar 

  • Blasco B, Leyva R, Romero L, Ruiz JM (2013) Iodine effects on phenolic metabolism in lettuce plants under salt stress. J Agric Food Chem 61:2591–2596

    Article  CAS  PubMed  Google Scholar 

  • Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campos MLAM (1997) New approach to evaluating dissolved iodine speciation in natural waters using cathodic stripping voltammetry and a storage study for preserving iodine species. Mar Chem 57:107–117

    Article  CAS  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collen P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, van Dorsselaer A, Kloareg B, Potin P (2003) The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J Biol Chem 278:23545–23552

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Leblanc C, Michel G, Wagner E, Leize-Wagner E, van Dorsselaer A, Potin P (2005) Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem 10:156–166

    Article  CAS  PubMed  Google Scholar 

  • Courtois B (1813) Découverte d’une substance nouvelle dans le Vareck. Ann Chim 88:304–310

    Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Davison IR, Reed RH (1985a) Osmotic adjustment in Laminaria digitata (Phaeophyta) with particular reference to seasonal changes in internal solute concentrations. J Phycol 21:41–50

    Article  Google Scholar 

  • Davison IR, Reed RH (1985b) The physiological significance of mannitol accumulation in brown algae: the role of mannitol as a compatible cytoplasmic solute. Phycologia 24:449–457

    Article  CAS  Google Scholar 

  • DeBoer JA, Guigli HJ, Israel TL, D’Elia CF (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J Phycol 14:261–266

    Article  CAS  Google Scholar 

  • Dixneuf S, Ruth AA, Vaughan S, Varma RM, Orphal J (2009) The time dependence of molecular iodine emission from Laminaria digitata. Atmos Chem Phys 9:823–829

    Article  CAS  Google Scholar 

  • Eggert A, Nitschke U, West JA, Michalik D, Karsten U (2007) Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. J Exp Mar Biol Ecol 343:176–186

    Article  CAS  Google Scholar 

  • Erdmann N, Hagemann M (2001) Salt acclimation of algae and cyanobacteria: a comparison. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, Heidelberg, pp 323–362

    Chapter  Google Scholar 

  • Gamallo-Lorenzo D, Barciela-Alonso MC, Moreda-Piñeiro A, Bermejo-Barrer A, Bermejo-Barrera P (2005) Microwave-assisted alkaline digestion combined with microwave-assisted distillation for the determination of iodide and total iodine in edible seaweed by catalytic spectrophotometry. Anal Chim Acta 542:287–295

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gimmler H, Kaaden R, Kirchner U, Weyand A (1984) The chloride sensitivity of Dunaliella parva enzymes. Z Pflanzenphysiol 114:131–150

    Article  CAS  Google Scholar 

  • Haug A, Jensen A (1954) Seasonal variations in the chemical composition of Alaria esculenta, Laminaria saccharina, Laminaria hyperborea and Laminaria digitata from northern Norway. Technical Report 84, Norwegian Institute of Seaweed Research

  • Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  • Hou X, Hansena V, Aldahanb A, Possnert G, Lindd OC, Lujaniene G (2009) A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta 632:181–196

    Article  CAS  PubMed  Google Scholar 

  • Karsten U (2007) Salinity tolerance of Arctic kelps from Spitsbergen. Phycol Res 55:257–262

    Article  Google Scholar 

  • Karsten U (2012) Seaweed acclimation to salinity and desiccation stress. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilizations. Springer, Berlin, pp 87–107

    Chapter  Google Scholar 

  • Karsten U, Thomas DN, Weykam G, Daniel C, Kirst GOA (1991) A simple and rapid method for extraction and separation of low molecular weight carbohydrates from macroalgae using high-performance liquid chromatography. Plant Physiol Biochem 29:373–378

    CAS  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Article  Google Scholar 

  • Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Article  Google Scholar 

  • Kundel M, Thorenz UR, Petersen JH, Huang R-J, Bings NH, Hoffmann T (2012) Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed. Anal Bioanal Chem 402:3345–3357

    Article  CAS  PubMed  Google Scholar 

  • Küpper FC, Schweigert N, Ar Gall E, Legendre JM, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171

    Article  Google Scholar 

  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291

    Article  PubMed Central  PubMed  Google Scholar 

  • Küpper FC, Müller DG, Peters AF, Kloareg B, Potin P (2002) Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of Laminariales. J Chem Ecol 28:2057–2081

    Article  PubMed  Google Scholar 

  • Küpper FC, Carpenter LC, McFiggans GB, Palmer CJ, Waite TJ, Boneberg E-M, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW III, Kroneck PMH, Meyer-Klaucke W, Feiters MC (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA 105:6954–6958

    Article  PubMed  Google Scholar 

  • Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW III, Lu Z, Jonsson M, Kloo L (2011) Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem Int Ed 50:11598–11620

    Article  Google Scholar 

  • Küpper FC, Carpenter LC, Leblanc C, Toyama C, Uchida Y, Maskrey BH, Robinson J, Verhaeghe EF, Malin G, Luther GW III, Kroneck PMH, Kloareg B, Meyer-Klaucke W, Muramatsu Y, Megson IL, Potin P, Feiters MC (2013) In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. J Exp Bot 64:2653–2664

    Article  PubMed  Google Scholar 

  • Kylin H (1929) Über das Vorkommen von Jodiden, Bromiden und Jodidoxidasen bei den Meeresalgen. Hoppe-Seylor’s Z Physiol Chem 186:50–84

    Article  CAS  Google Scholar 

  • Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773–1785

    Article  CAS  PubMed  Google Scholar 

  • Leyva R, Sánchez-Rodríguez E, Ríos JJ, Rubio-Wilhelmi MM, Romero L, Ruiz JM, Blasco B (2011) Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci 181:195–202

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Nitschke U, Boedeker C, Karsten U, Hepperle D, Eggert A (2010) Does the lack of mannitol accumulation in an isolate of Rhodella maculata (Rhodellophyceae, Rhodophyta) from the brackish Baltic Sea indicate a stressed population at the distribution limit? Eur J Phycol 45:436–449

    Article  CAS  Google Scholar 

  • Nitschke U, Ruth AA, Dixneuf S, Stengel DB (2011) Molecular iodine emission rates and photosynthetic performance of different thallus parts of Laminaria digitata (Phaeophyceae) during emersion. Planta 233:737–748

    Article  CAS  PubMed  Google Scholar 

  • Nitschke U, Connan S, Stengel DB (2012) Chlorophyll a fluorescence responses of temperate Phaeophyceae under submersion and emersion regimes: a comparison of rapid and steady-state light curves. Photosynth Res 114:29–42

    Article  CAS  PubMed  Google Scholar 

  • Nitschke U, Dixneuf S, Ruth AA, Schmid M, Stengel DB (2013) Molecular iodine (I2) emission from two Laminaria species (Phaeophyceae) and impact of irradiance and temperature on I2 emission into air and iodide release into seawater from Laminaria digitata. Mar Environ Res 92:102–109

    Google Scholar 

  • Palmer CJ, Anders TL, Carpenter LJ, Küpper FC, McFiggans GB (2005) Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ Chem 2:282–290

    Article  CAS  Google Scholar 

  • Pedersén M, Roomans GM (1983) Ultrastructural localization of bromine and iodine in the stipes of Laminaria digitata (Huds.) Lamour., Laminaria saccharina (L.) Lamour. and Laminaria hyperborea (Gunn.) Fosl. Bot Mar 26:113–118

  • Reed RH, Wright PJ (1986) Release of mannitol from Pilayella littoralis (Phaeophyta: Ectocarpales) in response to hypoosmotic stress. Mar Ecol Prog Ser 29:205–208

    Article  CAS  Google Scholar 

  • Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24:35–47

    Article  Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006a) Growth and DNA damage in young Laminaria sporophytes exposed to ultraviolet radiation: implication for depth zonation of kelps on Helgoland (North Sea). Mar Biol 148:1201–1211

    Article  CAS  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D (2006b) Thallus morphology and optical characteristics affect growth and DNA damage by UV radiation in juvenile Arctic Laminaria sporophytes. Planta 223:407–417

    Article  CAS  PubMed  Google Scholar 

  • Rosell K-G, Srivastava LM (1984) Binding of inorganic elements to kelp residues. Hydrobiologia 116:505–509

    Article  Google Scholar 

  • Saenko GN, Kravtsova YY, Ivanenko VV, Sheludko SI (1978) Concentration of iodine and bromine by plants in seas of Japan and Okhotsk. Mar Biol 47:243–250

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Serôdio J, Lavaud J (2011) A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynth Res 108:61–76

    Article  PubMed  Google Scholar 

  • Shah M, Wuilloud RG, Kannamkumaratha SS, Caruso JA (2005) Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J Anal At Spectrom 20:176–182

    Article  CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Verhaeghe EF, Fraysse A, Guerquin-Kern J-L, Wu T-D, Devés G, Mioskowski C, Leblanc C, Ortega R, Ambroise Y, Potin P (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269

    Article  CAS  PubMed  Google Scholar 

  • Walsby A (1997) Modelling the daily integral of photosynthesis by phytoplankton: its dependence on the mean depth of the population. Hydrobiologia 349:65–74

    Article  CAS  Google Scholar 

  • Wieners PC, Mudimu O, Bilger W (2012) Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosynth Res 113:239–247

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U (1978) Physics of turgor- and osmoregulation. Ann Rev Plant Physiol 29:121–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Frithjof C. Küpper (Oceanlab, University of Aberdeen) for enriching the discussion on the physiological function of iodine in kelps and Matthias Schmid (Botany and Plant Science, School of Natural Sciences, and Ryan Institute, NUI Galway) for technical assistance. Financial support from the Irish Research Council (IRC, Embark Initiative) and the Environmental Protection Agency (EPA large-scale project: ‘Exchange at the Air-Sea Interface: Air Quality & Climate ImpactS’ 2007-CCRP-5.5) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Nitschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitschke, U., Stengel, D.B. Iodine contributes to osmotic acclimatisation in the kelp Laminaria digitata (Phaeophyceae). Planta 239, 521–530 (2014). https://doi.org/10.1007/s00425-013-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1992-z

Keywords

Navigation