Skip to main content
Log in

Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The brown alga Laminaria digitata features a distinct vanadium-dependent iodoperoxidase (vIPO) activity, which has been purified to electrophoretic homogeneity. Steady-state analyses at pH 6.2 are reported for vIPO (K I−m =2.5 mM; k I−cat =462 s−1) and for the previously characterised vanadium-dependent bromoperoxidase in L. digitata (K I−m =18.1 mM; k I−cat =38 s−1). Although the vIPO enzyme specifically oxidises iodide, competition experiments with halides indicate that bromide is a competitive inhibitor with respect to the fixation of iodide. A full-length complementary ANA (cDNA) was cloned and shown to be actively transcribed in L. digitata and to encode the vIPO enzyme. Mass spectrometry analyses of tryptic digests of vIPO indicated the presence of at least two very similar proteins, in agreement with Southern analyses showing that vIPOs are encoded by a multigenic family in L. digitata. Phylogenetic analyses indicated that vIPO shares a close common ancestor with brown algal vanadium-dependent bromoperoxidases. Based on a three-dimensional structure model of the vIPO active site and on comparisons with those of other vanadium-dependent haloperoxidases, we propose a hypothesis to explain the evolution of strict specificity for iodide in L. digitata vIPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

bp:

base pair

BPO:

Bromoperoxidase

cDNA:

Complementary DNA

CPO:

Chloroperoxidase

HPO:

Haloperoxidase

IPO:

Iodoperoxidase

LC:

Liquid chromatography

mRNA:

Messenger RNA

MS/MS:

Tandem mass spectrometry

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

SDS:

Sodium dodecyl sulphate

SSC:

Saline–sodium citrate

UTR:

Untranslated region

vBPO:

Vanadium-dependent BPO

vCPO:

Vanadium-dependent CPO

vHPO:

Vanadium-dependent HPO

vIPO:

Vanadium-dependent IPO

References

  1. Gribble GW (2003) Chemosphere 52:289–297

    Article  CAS  PubMed  Google Scholar 

  2. Littlechild JA (1999) Curr Opin Chem Biol 3:28–34

    Google Scholar 

  3. de Boer E, Wever R (1988) J Biol Chem 263:12326–12332

    Google Scholar 

  4. Arber JM, de Boer E, Garner CD, Hasnain SS, Wever R (1989) Biochemistry 28:7968–7973

    Google Scholar 

  5. Vilter H (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems. vol. 31 Marcel Dekker, Inc., New York, Basel, Hong Kong, pp325–362

  6. Vollenbroek EGM, Simons LH, van Schijndel JW, Barnett P, Balzar M, Dekker HL, van der Linden C, Wever R (1995) Biochem Soc Trans 23:267–271

    Google Scholar 

  7. Barnett P, Hemrika W, Dekker HL, Muijsers AO, Renirie R, Wever R (1998) J Biol Chem 273:23381–23387

    Google Scholar 

  8. Plat H, Krenn BE, Wever R (1987) Biochem J 248:277–279

    Google Scholar 

  9. Messerschmidt A, Wever R (1996) Proc Natl Acad Sci USA 93:392–396

    Google Scholar 

  10. Weyand M, Hecht HJ, Kiess M, Liaud M-F, Vilter H, Schomburg D (1999) J Mol Biol 293:595–611

    Google Scholar 

  11. Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA (2000) J Mol Biol 299:1035–1049

    Google Scholar 

  12. Butler A, Carter JN, Simpson MT (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Marcel Dekker, Inc, New York, Basel uijsers AO, pp153–179

  13. Tanaka N, Hasan Z, Wever R (2003) Inorg Chim Acta 356:288–296

    Google Scholar 

  14. Carter JN, Beatty KE, Simpson MT, Butler A (2002) J Inorg Biochem 91:59–69

    Google Scholar 

  15. Messerschmidt A, Prade L, Wever R (1997) Biol Chem 378:309–315

    Google Scholar 

  16. Hemrika W, Renirie R, Macedo-Ribeiro S, Messerschmidt A, Wever R (1999) J Biol Chem 274:23820–23827

    Google Scholar 

  17. Butler A (1999) Coord Chem Rev 187:17–35

    Google Scholar 

  18. Renirie R, Hemrika W, Wever R (2000) J Biol Chem 275:11650–11657

    Google Scholar 

  19. Dau H, Dittmer J, Epple M, Hanss J, Kiss E, Rehder D, Schulzke C, Vilter H (1999) FEBS Lett 457:237–240

    Google Scholar 

  20. Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, van Dorsselaer A, Kloareg B, Potin P (2003) J Biol Chem 278:23545–23552

    Google Scholar 

  21. Apt KE, Clendennen SK, Powers DA, Grossman AR (1995) Mol Gen Genet 246:455–464

    Google Scholar 

  22. Crépineau F, Roscoe T, Kaas R, Kloareg B, Boyen C (2000) Plant Mol Biol 43:503–513

    Google Scholar 

  23. Katoh K, Misawa K, Kuma K, Miyata T (2002) Nucleic Acids Res 30:3059–3066

    Article  Google Scholar 

  24. Gouet P, Robert X, Courcelle E (2003) Nucleic Acids Res 31:3320–3323

    Google Scholar 

  25. Fitch WM (1971) Syst Zool 20:406–416

    Google Scholar 

  26. Galtier N, Gouy M, Gautier C (1996) Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  27. Saitou N, Nei M (1987) Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  28. Felsenstein J (1985) Evolution 39:783–791

    Google Scholar 

  29. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–272321

    CAS  PubMed  Google Scholar 

  30. Littlechild JA, Garcia-Rodriguez E, Dalby AR, Isupov MN (2002) J Mol Recognit 15:291–296

    Google Scholar 

  31. Bhattacharya D, Medlin L (1998) Plant Physiol 116:9–15

    Google Scholar 

  32. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) Science 290:972–977

    Article  CAS  PubMed  Google Scholar 

  33. Draisma SGA, Peters AF, Fletcher RL (2003) In: Norton TA (ed) Out of the past. The British phycological society, pp87–102

  34. Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JAL, Frausto da Silva JJR, Wever R (2001) Phytochemistry 57:633–642

    Google Scholar 

  35. Verschueren KH, Kingma J, Rozeboom HJ, Kalk KH, Janssen DB, Dijkstra BW (1993) Biochemistry 32:9031–9037

    Google Scholar 

  36. Machius M, Wiegand G, Huber R (1995) J Mol Biol 246:545–559

    Article  CAS  PubMed  Google Scholar 

  37. Fukuyama K, Sato K, Itakura H, Takahashi S, Hosoya T (1997) J Biol Chem 272:5752–5756

    Google Scholar 

  38. Fiedler TJ, Davey CA, Fenna RE (2000) J Biol Chem 275:11964–11971

    Google Scholar 

  39. Saenko GN, Kravtsova YY, Ivanenko VV, Sheludko S I (1978) Mar Biol 47:243–250

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Commission “GROWTH Program”, Research Project AB, Algal Bioadhesives, G5RD-CT-2001-00542, by a Ph.D. grant from the Région Bretagne (to C.C.) and a Ph.D. grant from Bruker–Daltonic (to E.W.). We are grateful to Agilent Technologies for providing the capillary LC system for MS analyses and to Marc Cock for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Potin.

Additional information

The nucleotide sequence reported in this paper has been submitted to the EBI Data Bank with accession no. AJ619804.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colin, C., Leblanc, C., Michel, G. et al. Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem 10, 156–166 (2005). https://doi.org/10.1007/s00775-005-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0626-8

Keywords

Navigation