Skip to main content
Log in

Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Genes encoding two new isoforms of sucrose synthase from barley, HvSs3 and HvSs4, have been characterised and their expression patterns compared with those previously described for HvSs1 and HvSs2, in different organs and during seed maturation and germination. Their response to several abiotic stimuli has also been investigated in leaves: HvSs1 is up-regulated by anoxia and HvSs3 by water deprivation while no response is observed to 150 mM NaCl treatment; HvSs1 and HvSs3 are also induced by cold temperatures. Using translational fusions and transient expression analyses, the four isozymes have been localised not only to the cytoplasm but also along several cytoplasmic tracks and at the inner side of the cell membrane; besides, HvSS1 is also associated with mitochondria, a localisation that has been predicted in silico with the TargetP and Predotar programmes. These data suggest distinct although partially overlapping roles, for the four barley sucrose synthase isoforms, in the channelling of carbon towards different metabolic pathways within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

dap:

Days after pollination

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

G:

Golgi apparatus

hai:

Hours after imbibition

mCherryFP:

mCherry fluorescent protein

MT:

Mitochondria

mTP:

Mitochondrial targeting peptide

PM:

Plasma membrane

PT:

Plastids

SUS:

Sucrose synthase

UbiE2:

UbiquitinE2

References

  • Amor Y, Haigler C, Johnson S, Winscott M, Delmer D (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  PubMed  CAS  Google Scholar 

  • Angeles-Nuñez JG, Tiessen A (2010) Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232:701–718

    Article  PubMed  Google Scholar 

  • Baroja-Fernández E, Muñoz F, Montero M, Etxeberria E, Sesma M, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50:1651–1662

    Article  PubMed  Google Scholar 

  • Barratt DH, Barber L, Kruger N, Smith A, Wang T, Martin C (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655–664

    Article  PubMed  CAS  Google Scholar 

  • Barratt DH, Derbishire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule A, Smith A (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy S, Griffiths-Jones S, Howe K, Marshall M, Sonnhammer E (2002) The Pfam protein families database. Nucleic Acid Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    Article  PubMed  CAS  Google Scholar 

  • Bieniawska Z, Barratt DH, Garlick A, Thole V, Kruger N, Martin C, Zrenner R, Smith A (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  PubMed  CAS  Google Scholar 

  • Buckeridge M, Vergara C, Carpita N (1999) The mechanism of synthesis of a mixed-linkage (1 → 3),(1 → 4)β-d-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol 120:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Carlson S, Chourey P (1996) Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol Gen Genet 252:1432–1874

    Article  Google Scholar 

  • Carlson SJ, Chourey PS, Helentjaris T, Datta R (2002) Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Mol Biol 49:15–29

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Carney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chourey P, Taliercio E, Carlson S, Ruan YL (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259:88–96

    Article  PubMed  CAS  Google Scholar 

  • Coleman HD, Yan J, Mansfield S (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123

    Article  PubMed  CAS  Google Scholar 

  • Crespi M, Zabaleta E, Pontis H, Salerno G (1991) Sucrose synthase expression during cold acclimation in wheat. Plant Physiol 96:887–891

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–528

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Gońzález P (2003) Evidence for a tonoplast-associated form of sucrose synthase and its potential involvement in sucrose mobilization from the vacuole. J Exp Bot 54:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery, 2010. Plant Cell Physiol 51:294–301

    Article  PubMed  CAS  Google Scholar 

  • Gordon A, Minchin F, James C, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878

    Article  PubMed  CAS  Google Scholar 

  • Guerin J, Carbonero P (1997) The spatial distribution of sucrose synthase isozymes in barley. Plant Physiol 114:55–62

    PubMed  CAS  Google Scholar 

  • Harada T, Satoh S, Yoshioka T, Ishizawa K (2005) Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia. Ann Bot 96:683–692

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Scofield G, Terao T (2008) An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci 174:534–543

    CAS  Google Scholar 

  • Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang T (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820

    Article  PubMed  CAS  Google Scholar 

  • Kleines M, Elster R-C, Rodrigo MJ, Blervacq A-S, Salamini F, Bartels D (1999) Isolation and expression analysis of two stressed-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta 209:13–24

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71

    Article  PubMed  CAS  Google Scholar 

  • Lagrimini LM, Burkhart W, Moyer M, Rothstein S (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci USA 84:7542–7546

    Article  PubMed  CAS  Google Scholar 

  • Maraña C, Garcia-Olmedo F, Carbonero P (1990) Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172

    Article  PubMed  Google Scholar 

  • Martínez de Ilarduya O, Vicente-Carbajosa J, Sánchez de la Hoz P, Carbonero P (1993) Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett 320:177–181

    Article  PubMed  Google Scholar 

  • Moreno-Risueno MA, Díaz I, Carrillo L, Fuentes R, Carbonero P (2007) The HvDOF19 transcription factor mediates the abscisic acid dependent repression of hydrolase genes in germinating barley aleurone. Plant J 51:352–365

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Risueno MA, Gonzalez N, Diaz I, Parcy F, Carbonero P, Vicente-Carbajosa J (2008) FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis. Plant J 53:882–894

    Article  PubMed  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Nelson B, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localisation studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Nolte K, Koch K (1993) Companion-cell specific localisation of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905

    PubMed  CAS  Google Scholar 

  • Nuñez JGA, Kronenberger J, Wuilleme S, Lepiniec L, Rochat C (2008) Study of AtSUS2 localisation in seeds reveals a strong association with plastids. Plant Cell Physiol 49:1621–1626

    Article  PubMed  Google Scholar 

  • Persia D, Cai G, Del Casino C, Faleri C, Willemse M, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618

    Article  PubMed  CAS  Google Scholar 

  • Ricard B, Rivoal J, Spiteri A, Pradet A (1991) Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol 95:669–674

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation and seed development. Plant Cell 15:952–964

    Article  PubMed  CAS  Google Scholar 

  • Sánchez de la Hoz P, Vicente-Carbajosa J, Mena M, Carbonero P (1992) Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn. 1) and 2H. Evidence for a gene translocation? FEBS Lett 310:46–50

    Article  PubMed  Google Scholar 

  • Sato K, Shin-I T, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y (2009) Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res 16:81–89

    Article  PubMed  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Staehelin L (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah C, Palaniappan A, Duncan K, Rhoads D, Huber S, Sachs M (2006) Mitochondrial localisation and putative signalling function of sucrose synthase in maize. J Biol Chem 281:15625–15635

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar C (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    Article  PubMed  CAS  Google Scholar 

  • Wang AI, Kao MH, Yang WH, Sayion Y, Liu LF, Lee PD, Su JC (1999) Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol 40:800–807

    PubMed  CAS  Google Scholar 

  • Winter H, Huber J, Huber S (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Lett 430:205–208

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wu Y, Avigne WT, Koch KE (1998) Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol 116:1573–1583

    Article  PubMed  CAS  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants to PC from the Spanish Ministerio de Educación y Ciencia (BFU2006-07258) and from the Spanish Ministerio de Innovación y Ciencia (BFU2009-11809); C.B.-S. holds a postdoctoral Juan de la Cierva-UPM contract; S.H.-A. is supported by a FPU doctoral fellowship from MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Barrero-Sicilia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

α-Actin2 and UbiE2 expression in abiotically stressed leaves: hypoxia, salt, drought and cold temperatures as specified in the text. The 18S gene was used to normalize the RT-qPCR data (TIFF 107 kb)

Supplementary Fig. S2

Subcellular localisation of HvSS2 fused to GFP (a), HvSS3 fused to mCherryFP (b) and overlay projection of the two previous ones (c) (TIFF 2418 kb)

Supplementary Fig. S3

Fluorescence pattern of five organelle markers (mCherryFP) in bombarded epidermal onion cells, specific for: the endoplasmic reticulum (a), plasma membrane (b), Golgi apparatus (c), plastids (d) and mitochondria (e) (TIFF 7975 kb)

Supplementary Table S1. Oligonucleotides used for HvSs (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrero-Sicilia, C., Hernando-Amado, S., González-Melendi, P. et al. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234, 391–403 (2011). https://doi.org/10.1007/s00425-011-1408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1408-x

Keywords

Navigation