Skip to main content

Advertisement

Log in

Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two genes encoding sucrose synthase (SUS), namely SUS2 (At5g49190) and SUS3 (At4g02280), are strongly and differentially expressed in Arabidopsis seed. Detailed biochemical analysis was carried out in developing seeds 9–21 days after flowering (DAF) of wild type and two knockouts. SUS2 and SUS3 are not redundant genes since single knockouts show a phenotype in developing seeds. The mutants had 30–50% less SUS activity and therefore accumulated 40% more sucrose and 50% less fructose at 15 DAF. This did not affect the hexose-P pool, but led to 30–70% less starch in embryo and seed coat. Lipids were 55% higher in both mutants at 9–15 DAF. It seems that sucrolysis via SUS is not required for oil or protein synthesis but rather for channeling carbon toward ADP-glucose and starch in seeds. Metabolite profiling with GC–TOF revealed specific downstream changes in primary metabolism as a consequence of signaling or regulatory fine-tuning. While sucrose increased, hexoses and specific amino acids decreased reciprocally. There was a developmental shift regarding an earlier timing of dry weight accumulation, germinative maturity, oil deposition, sugar levels, transient starch buildup, and protein storage. Nevertheless, final seed size and composition were unaltered due to an earlier cessation of growth, thus giving rise to an apparent silent phenotype of mature mutant seeds. We conclude that SUS is important for metabolite homeostasis and timing of seed development, and propose that an altered sucrose/hexose ratio can modify carbon partitioning and the pattern of storage compounds in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SUS:

Sucrose synthase

INV:

Invertase

DAF:

Days after flowering

ADP:

Adenosine diphosphate

Hexose-P:

Hexose phosphate

GC/TOF-MS:

Gas chromatography coupled to time of flight mass spectrometry

FA:

Fatty acid

References

  • Angeles-Núñez JG, Kronenberger J, Wuilleme S, Lepiniec L, Rochat C (2008) Study of AtSUS2 localization in seeds reveals a strong association with plastids. Plant Cell Physiol 49:1621–1626

    Article  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Google Scholar 

  • Baroja-Fernandez E, Munoz FJ, Akazawa T, Pozueta-Romero J (2001) Reappraisal of the currently prevailing model of starch biosynthesis in photosynthetic tissues: a proposal involving the cytosolic production of ADP-glucose by sucrose synthase and occurrence of cyclic turnover of starch in the chloroplast. Plant Cell Physiol 42:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Baroja-Fernandez E, Munoz FJ, Saikusa T, Rodriguez-Lopez M, Akazawa T, Pozueta-Romero J (2003) Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol 44:500–509

    Article  CAS  PubMed  Google Scholar 

  • Baroja-Fernandez E, Munoz FJ, Zandueta-Criado A, Moran-Zorzano MT, Viale AM, Alonso-Casajus N, Pozueta-Romero J (2004) Most of ADP-glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves. Proc Natl Acad Sci USA 101:13080–13085

    Article  CAS  PubMed  Google Scholar 

  • Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160

    Article  CAS  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum, New York

    Google Scholar 

  • Bieniawska Z, Barratt DHP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  CAS  PubMed  Google Scholar 

  • Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P (2003) A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol 132:2058–2072

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386

    Article  CAS  PubMed  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  CAS  PubMed  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  CAS  PubMed  Google Scholar 

  • Chourey PS, Taliercio EW, Carlson SJ, Ruan YL (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259:88–96

    Article  CAS  PubMed  Google Scholar 

  • Craig J, Barratt P, Tatge H, Dejardin A, Handley L, Gardner CD, Barber L, Wang T, Hedley C, Martin C, Smith AM (1999) Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase. Plant J 17:353–362

    Article  CAS  Google Scholar 

  • da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawsthorne S (1997) Starch metabolism in developing embryos of oilseed rape. Planta 203:480–487

    Article  CAS  Google Scholar 

  • Dejardin A, Rochat C, Wuilleme S, Boutin JP (1997) Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant Cell Environ 20:1421–1430

    Article  CAS  Google Scholar 

  • Dejardin A, Sokolov LN, Kleczkowski LA (1999) Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J 344:503–509

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ, Germain V, Lange PR, Bryce JH, Smith SM, Graham IA (2000) Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA 97:5669–5674

    Article  CAS  PubMed  Google Scholar 

  • Egger B, Hampp R (1993) Invertase, sucrose synthase and sucrose phosphate synthase in lyophilized spruce needles—microplate reader assays. Trees Struct Funct 7:98–103

    Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  CAS  PubMed  Google Scholar 

  • Fallahi H, Scofield GN, Badger MR, Chow WS, Furbank RT, Ruan YL (2008) Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. J Exp Bot 59:3283–3295

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Tiessen A, Stitt M, Willmitzer L, Geigenberger P (2002) Altered metabolic fluxes result from shifts in metabolite levels in sucrose phosphorylase-expressing potato tubers. Plant Cell Environ 25:1219–1232

    Article  CAS  Google Scholar 

  • Fiehn O (2006) Metabolite profiling in Arabidopsis. Methods Mol Biol 323:439–447

    CAS  PubMed  Google Scholar 

  • Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyzes a readily reversible-reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339

    Article  CAS  Google Scholar 

  • Herbers K, Sonnewald U (1998) Molecular determinants of sink strength. Curr Opin Plant Biol 1:207–216

    Article  CAS  PubMed  Google Scholar 

  • Hills MJ (2004) Control of storage-product synthesis in seeds. Curr Opin Plant Biol 7:302–308

    Article  CAS  PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the sink-regulation of photosynthesis in spinach—changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Delhaye S (1996) A simple and rapid procedure for hydrolyzing minute amounts of proteins with alkali. Anal Biochem 243:191–194

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Cluette-Brown JE, Goodman HM (2004) The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis. Plant Physiol 135:814–827

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Ulanov AV, Lozovaya V, Widholm J, Zhang GR, Guo JH, Goodman HM (2006) Genetic and transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolic interactions of biochemical pathways. Planta 225:153–164

    Article  CAS  PubMed  Google Scholar 

  • Lytovchenko A, Sonnewald U, Fernie AR (2007) The complex network of non-cellulosic carbohydrate metabolism. Curr Opin Plant Biol 10:227–235

    Article  CAS  PubMed  Google Scholar 

  • Mansfield SG, Briarty LG (1992) Cotyledon cell-development in Arabidopsis thaliana during reserve deposition. Can J Bot 70:151–164

    Article  Google Scholar 

  • Marana C, Garciaolmedo F, Carbonero P (1990) Differential expression of 2 types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Morandini P (2009) Rethinking metabolic control. Plant Sci 176:441–451

    Article  CAS  Google Scholar 

  • Morley-Smith ER, Pike MJ, Findlay K, Koeckenberger W, Hill LM, Smith AM, Rawsthorne S (2008) The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol 147:2121–2130

    Article  CAS  PubMed  Google Scholar 

  • Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajus N, Pozueta-Romero J (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46:1366–1376

    Article  CAS  PubMed  Google Scholar 

  • Munoz FJ, Zorzano MTM, Alonso-Casajus N, Baroja-Fernandez E, Etxeberria E, Pozueta-Romero J (2006) New enzymes, new pathways and an alternative view on starch biosynthesis in both photosynthetic and heterotrophic tissues of plants. Biocatal Biotransformation 24:63–76

    Article  CAS  Google Scholar 

  • Oliver SN, Tiessen A, Fernie AR, Geigenberger P (2008) Decreased expression of plastidial adenylate kinase in potato tubers results in an enhanced rate of respiration and a stimulation of starch synthesis that is attributable to post-translational redox-activation of ADP-glucose pyrophosphorylase. J Exp Bot 59:315–325

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  PubMed  Google Scholar 

  • Pozuetaromero J, Yamaguchi J, Akazawa T (1991) Adpg formation by the Adp-specific cleavage of sucrose-reassessment of sucrose synthase. FEBS Lett 291:233–237

    Article  CAS  Google Scholar 

  • Pozueta-Romero J, Perata P, Akazawa T (1999) Sucrose-starch conversion in heterotrophic tissues of plants. Crit Rev Plant Sci 18:489–525

    Article  CAS  Google Scholar 

  • R Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  CAS  PubMed  Google Scholar 

  • Roessner-Tunali U, Urbanczyk-Wochniak E, Czechowski T, Kolbe A, Willmitzer L, Fernie AR (2003) De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol 133:683–692

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  CAS  PubMed  Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    Article  CAS  PubMed  Google Scholar 

  • Streb S, Egli B, Eicke S, Zeeman SC (2009) The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localised pathway. Plant Physiol 151:1769–1772

    Google Scholar 

  • Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  CAS  PubMed  Google Scholar 

  • Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford NG, Geigenberger P (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J 35:490–500

    Article  CAS  PubMed  Google Scholar 

  • Trethewey RN, Riesmeier JW, Willmitzer L, Stitt M, Geigenberger P (1999) Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208:227–238

    Article  CAS  PubMed  Google Scholar 

  • Weber H, Buchner P, Borisjuk L, Wobus U (1996) Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose-phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed development. Plant J 9:841–850

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 101:7809–7814

    Article  CAS  PubMed  Google Scholar 

  • Weigelt K, Kuster H, Radchuk R, Muller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  CAS  PubMed  Google Scholar 

  • Wobus U, Weber H (1999) Seed maturation: genetic programmes and control signals. Curr Opin Plant Biol 2:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. P. Delano, J. P. Boutin and several INRA colleagues and scientists for critical reading of the manuscript. We thank Samuel Gómez Vargas for the help with Arabidopsis cultures. This study was supported by fellowships from the Consejo Nacional de Ciencia y Tecnología (CONACYT México) to J. G. Angeles-Núñez. A. Tiessen also acknowledges project funding by Deutsche Forschungs Gemeinschaft (DFG), CONACYT and SAGARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Tiessen.

Additional information

This article is dedicated to the memory of the late Christine Rochat.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angeles-Núñez, J.G., Tiessen, A. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232, 701–718 (2010). https://doi.org/10.1007/s00425-010-1207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1207-9

Keywords

Navigation