Skip to main content
Log in

Flower development in garlic: the ups and downs of gaLFY expression

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The lack of sexual processes prohibits genetic studies and conventional breeding in commercial cultivars of garlic. Recent restoration of garlic flowering ability by environmental manipulations has opened new avenues for physiological and genetic studies. The LEAFY homologue gaLFY has been shown to be involved in the floral development, while two alternatively spliced gaLFY transcripts are expressed in flowering genotypes. In the present work, quantitative real-time PCR and two techniques of RNA in situ hybridization were employed to analyze spatiotemporal expression patterns of the gaLFY during consequent stages of the garlic reproductive process. Temporal accumulation of gaLFY is strongly associated with reproductive organs, significantly increased during florogenesis and gametogenesis, and is down-regulated in the vegetative meristems and topsets in the inflorescence. The two alternative transcripts of the gene show different expression patterns: a high level of the long gaLFY transcript coincided only with floral transition, while further up-regulation of this gene in the reproductive organs is associated mainly with the short gaLFY transcript. It is concluded that gaLFY is involved at different stages of the sexual reproduction of garlic. These new insights broaden our basic understanding of flower biology of garlic and help to establish conventional and molecular breeding systems for this important crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert VA, Oppenheimer DG, Lindqvist C (2002) Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 7:289–301

    Article  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676

    Article  PubMed  Google Scholar 

  • Benschop M, Kamenetsky R, Le Nard M, Okubo H, De Hertogh AA (2010) The global flower bulb industry: production, utilization, research. Hort Rev 36:1–115

    Google Scholar 

  • Bernier G, Perilleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotech J 3:3–16

    Article  CAS  Google Scholar 

  • Blázquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    Article  PubMed  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:231–1244

    Article  Google Scholar 

  • Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R (1990) Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Etoh T (1985) Studies on the sterility in garlic, Allium sativum L. Memoirs of the Faculty of Agriculture, Kagoshima University, vol 21. pp 77–132

  • Etoh T, Simon PW (2002) Diversity, fertility and seed production of garlic. In: Rabinowitch HD, Currah L (eds) Allium crop sciences: recent advances. CAB International, Wallingford, pp 101–117

    Chapter  Google Scholar 

  • Gocal GF, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes: analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenderek MM, Hannan RM (2004) Variation in reproductive characteristics and seed production in the USDA garlic germplasm collection. HortScience 39:485–488

    Google Scholar 

  • Jenderek MM, Zewdie Y (2005) Within- and between-family variability for important bulb and plant traits among sexually derived progenies of garlic. HortScience 40:1234–1236

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kamenetsky R (2007) Garlic: Botany and Horticulture. Hort Rev 33:123–172

    Article  CAS  Google Scholar 

  • Kamenetsky R, Rabinowitch HD (2001) Floral development in bolting garlic. Sex Plant Reprod 13:235–241

    Article  Google Scholar 

  • Kamenetsky R, Rabinowitch HD (2002) Florogenesis. In: Rabinowitch HD, Currah L (eds) Allium crop sciences: recent advances. CAB International, Wallingford, pp 31–58

    Chapter  Google Scholar 

  • Kamenetsky R, London Shafir I, Baizerman M, Khassanov F, Kik C, Rabinowitch HD (2004a) Garlic (Allium sativum L.) and its wild relatives from Central Asia: evaluation for fertility potential. Acta Hort 637:83–91

    Google Scholar 

  • Kamenetsky R, London Shafir I, Zemah H, Barzilay A, Rabinowitch HD (2004b) Environmental control of garlic growth and florogenesis. J Am Soc Hort Sci 129:144–151

    Google Scholar 

  • Kamenetsky R, London Shafir I, Khassanov F, Kik C, van Heusden AW, Vrielink-van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14:281–295

    Article  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  PubMed  Google Scholar 

  • Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci 95:1979–1982

    Article  CAS  PubMed  Google Scholar 

  • Lamb RS, Hill TA, Tan OK, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    CAS  PubMed  Google Scholar 

  • Meng Q, Zhang C, Huang F, Gai J, Yu D (2007) Molecular cloning and characterization of a LEAFY-like gene highly expressed in developing soybean seeds. Seed Sci Res 17:297–302

    Article  CAS  Google Scholar 

  • Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20:685–693

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdale RD (1998) NEEDLY, a Pinus radiate ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci 95:6537–6542

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F (2010) LEAFY blossoms. Trends Plant Sci 15:346–352

    Article  CAS  PubMed  Google Scholar 

  • Nilsson O, Lee I, Blazquez MA, Weigel D (1998) Flowering-time genes modulate the response to LEAFY activity. Genetics 150:403–410

    CAS  PubMed  Google Scholar 

  • Noy-Porat T, Kamenetsky R, Eshel A, Flaishman MA (2010) Temporal and spatial expression patterns of the LEAFY homologue NLF during florogenesis in Narcissus tazetta. Plant Sci 178:105–113

    Article  CAS  Google Scholar 

  • Oshima S, Nomura K (2008) RsLFY, a LEAFY homologue gene in radish (Raphanus sativus), is continuously expressed in vegetative, reproductive and seed development. Plant Biotechnol 25:579–582

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratcliffe OJ (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    CAS  PubMed  Google Scholar 

  • Rotem N, Shemesh E, Peretz Y, Akad F, Edelbaum O, Rabinowitch HD, Sela I, Kamenetsky R (2007) Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. J Exp Bot 58:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Shemesh E, Scholten O, Rabinowitch HD, Kamenetsky R (2008) Unlocking variability: inherent variation and developmental traits of garlic plants originated from sexual reproduction. Planta 227:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Shitsukawa N, Takagishi A, Ikari C, Takumi S, Murai K (2006) WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet Syst 81:13–20

    Article  CAS  PubMed  Google Scholar 

  • Shu GP, Amaral W, Hileman LC, Baum DA (2000) LEAFY and the evolution of rosette flowering in violet cress (Ionopsidium acaule, Brassicaceae). Am J Bot 87:634–641

    Article  CAS  PubMed  Google Scholar 

  • Souer E, Rebocho AB, Bliek M, Kusters E, de Bruin RAM, Koes R (2008) Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY Homolog ABERRANT LEAF AND FLOWER of Petunia. Plant Cell 20:2033–2048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szymkowiak EJ, Irish VE (2006) JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta 223:646–658

    Article  CAS  PubMed  Google Scholar 

  • Tooke F, Ordidge M, Chiurugwi T, Battey N (2005) Mechanisms and function of flower and inflorescence reversion. J Exp Bot 56:2587–2599

    Article  CAS  PubMed  Google Scholar 

  • Vijayraghavan U, Prasad K, Meyerowitz E (2005) Specification and maintenance of the floral meristem: interactions between positively acting promoters of flowering and negative regulators. Curr Sci 89:1835–1843

    Google Scholar 

  • Wang CN, Möller M, Cronk QCB (2004) Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Dev Genes Evol 3:122–127

    Article  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Zaccai M, Mazor I, Weingarten-Kenan E, Ram A (2008) Vernalization and floral transition in the Madonna lily (Lilium candidum). Abstracts of the Xth international symposium on flower bulbs and herbaceous perennials. Lisse, The Netherlands, p 38

  • Zeevaart JAD (1985) Perilla. In: Halevy AH (ed) Handbook, CRC of flowering. CRC Press, Raton Boca, pp 239–252

  • Zik M, Irish VF (2003) Flower development: initiation, differentiation, and diversification. Ann Rev Cell Dev Biol 19:119–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Belausov, E. Shemesh and H. Zemach, The Institute of Plant Science, Agricultural Research Organization, The Volcani Center, for their assistance in microscopic observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Kamenetsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2011_1361_MOESM1_ESM.ppt

Fig. S1 Primers and probes designed from the 682-bp fragment of gaLFY, GenBank AY563104. The two gaLFY transcripts, gaLFYl and gaLFYs, are different in 64 nucleotides (Rotem et al. 2007) (PPT 57 kb)

Table S1 Primers used in expression analysis of gaLFY and gaLFYl and actin by qPCR (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neta, R., David-Schwartz, R., Peretz, Y. et al. Flower development in garlic: the ups and downs of gaLFY expression. Planta 233, 1063–1072 (2011). https://doi.org/10.1007/s00425-011-1361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1361-8

Keywords

Navigation