Skip to main content

Carrot Floral Development and Reproductive Biology

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The defining characteristic of the botanical family of Apiaceae (former Umbelliferae) is the inflorescence. The flowers aggregate in terminal umbels that may be commonly compound, often umbelliform cymes. Likewise, flowers of the carrot are clustered in flat, dense umbels, partially with zygomorphic petals at the edges. Carrot producers and consumers mainly consider the vegetative phase, namely the storage root as a vegetable. Nevertheless, the reproductive phase is an important topic for genetic research, for breeding new cultivars and for seed production. Hence, improved knowledge on the genetic control mechanisms of reproduction such as flowering time, flower development and architecture, pollen fertility and male sterility, as well as seed set is of essential importance. The chapter reviews key steps on carrot floral development and reproductive biology, especially under consideration of the comprehensive genomic data set recently obtained from carrot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrol DP (1997) Impact of insect pollination on carrot seed production. Insect Environ 3:61

    Google Scholar 

  • Ahmad M, Aslam M (2002) Pollinators visiting carrot (Daucus carota L.) seed crop. J Res Sci 13:31–35

    Google Scholar 

  • Ajani Y, Bull-Herenu K, Claßen-Bockhoff R (2016) Pattern of flower development in Apiaceae-Apioideae. Flora 221:38–45

    Article  Google Scholar 

  • Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Am Soc Hort Sci 132:525–529

    Article  Google Scholar 

  • Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423

    Article  PubMed  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnott DA (1956) Some factors reducing carrot seed yields in British Columbia. Proc Entomol Sci BC 52:27–30

    Google Scholar 

  • Atherton JG, Basher EA (1984) The effects of photoperiod on flowering in carrot. J Hort Sci 59:213–215

    Article  Google Scholar 

  • Atherton JG, Craigon J, Basher EA (1990) Flowering and bolting in carrot. I. Juvenility, cardinal temperatures and thermal times for vernalization. J Hort Sci 65:423–429

    Article  Google Scholar 

  • Austin RB, Longden PC (1967) Some effects on seed size and maturity on the yield of carrot crops. J Hort Sci 42:339–353

    Article  Google Scholar 

  • Austin RB, Longden PC, Hutchinson J (1969) Some effects of ‘hardening’ carrot seed. Ann Bot 33:883–895

    Article  Google Scholar 

  • Bach I, Olesen A, Simon P (2002) PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365

    Article  CAS  Google Scholar 

  • Bagget JR, Kean D (1989) Inheritance of annual flowering in Brassica olereacea. HortScience 24:662–664

    Google Scholar 

  • Banga O, Petiet J, Van Bennekom JL (1964) Genetical analysis of male-sterility in carrots, Daucus carota L. Euphytica 13:75–93

    Article  Google Scholar 

  • Becker T (1943) Blütenbiologische Studien an Zwiebeln, Möhren, Sellerie und Petersilie. Kühn Archiv 60:466–492

    Google Scholar 

  • Becu R, Broascã L (2012) Comparative histoanatomical aspects of the fruit of some Apiaceae lindl. fruit used for therapeutic purposes. Ann Soc Nat Biol Cell 17:265–270

    Google Scholar 

  • Beiyernick MW (1885) Gynodioecie bei Daucus carota L. Neder Kruidk Arch Ser 4:345–355

    Google Scholar 

  • Bell CR (1971) Breeding systems and floraI biology of the Umbelliferae, or evidence for specialization in unspecialized flowers. In: Heywood VH (ed) The biology and chemistry of the Umbelliferae. Academic Press, London, pp 93–107

    Google Scholar 

  • Bereśniewicz M, Duczmal KW (1994) The effect of environmental conditions on carrot seed health. Plant Var Seeds 7:151–160

    Google Scholar 

  • Bonnet A (1991) Production and quality of hybrid carrot seeds. In: Eucarpia carrot 91—proceedings of the IVth meeting on breeding of carrots, pp 137–145

    Google Scholar 

  • Borkrid C, Choi JH, Jin ZH, Franz G, Hatzopoulos P, Chorneau R, Bonas U, Pelegri F, Sung ZR (1988) Developmental regulation of embryonic genes in plants. Proc Natl Acad Sci USA 85:6399–6403

    Article  Google Scholar 

  • Börner T, Linke B, Nothnagel T, Scheike R, Schulz B, Steinborn R, Brennicke A, Stein M, Wricke G (1995) Inheritance of nuclear and cytoplasmic factors affecting male sterility in Daucus carota. In: Kück U, Wricke G (eds) Genetic mechanisms for hybrid breeding. Advances in plant breeding, vol 18. Blackwell Science, Berlin, pp 111–122

    Google Scholar 

  • Borthwick HA (1931) Development of the macrogametophyte and embryo of Daucus carota. Bot Gaz 92:23–44

    Article  Google Scholar 

  • Borthwick HA, Phillips M, Robbins WW (1931) Floral development in Daucus carota. Am J Bot 18:784–786

    Article  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak JP, Kho YO (1958) Some observations on the floral biology of the carrot (Daucus carota L.). Euphytica 92:23–44

    Google Scholar 

  • Broussard MA, Mas F, Howlett B, Pattemore D, Tylianakis JM (2017) Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate. PLoS One 12:1–23

    Google Scholar 

  • Budahn H, Baranski R, Grzebelus D, Kielkowska A, Straka P, Metge K, Linke B, Nothnagel T (2014) Mapping genes governing flower architecture and pollen development in a double mutant population of carrot. Front Plant Sci 5:1–10

    Article  Google Scholar 

  • Bulajić A, Djekić I, Lakić N, Krstić B (2009) The presence of Alternaria spp. on the seed of Apiaceae plants and their influence on seed emergence. Arch Biol Sci 61:871–881

    Article  Google Scholar 

  • Carlsson J, Leino M, Sohlberg J, Sundström JF, Glimelius K (2008) Mitochondrial regulation of flower development. Mitochondrion 8:74–86

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Ann Rev Plant Biol 65:579–606

    Article  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Corner EJH (1976) The seeds of dicotyledons, vol 2. Cambridge University Press, p 311

    Google Scholar 

  • Craigon J, Atherton JG, Basher EA (1990) Flowering and bolting in carrot. II. Prediction in growth room, glasshouse and field environments. J Hort Sci 65:547–554

    Article  Google Scholar 

  • Dale HM (1974) The biology of canadian weeds. 5. Daucus carota. Can J Plant Sci 54:673–685

    Article  Google Scholar 

  • Dale HM, Harrison PJ (1966) Wild carrot seeds, germination and dormancy. Weeds 14:201–204

    Article  Google Scholar 

  • Dame A, Bielau M, Stein M, Weit E (1988) Zur Entwicklung von männlich sterile Linien bei der Speisemöhre (Daucus carota L. ssp. sativus (Hoffm.) Arcang.). Arch Gartenbau Berlin 36:345–352

    Google Scholar 

  • Demir I, Ellis RH (1992) Changes in seed quality during seed development and maturation in tomato. Seed Sci Res 2:81–87

    Article  Google Scholar 

  • Dias-Tagliacozzo GM, Valio IF (1994) Effect of vernalization on flowering of Daucus carota (Cvs Nantes and Brasilia). Rev Bras Fisiol Veg 6:71–73

    Google Scholar 

  • Dickson MH, Peterson CE (1960) The influence of gibberellin on the flowering of carrots. Can J Plant Sci 40:468–473

    Article  CAS  Google Scholar 

  • Doyle JJ (1994) Evolution of a plant homeotic multigene family: towards connecting molecular systematics and molecular developmental genetics. Syst Biol 43:307–328

    Google Scholar 

  • Duczmal K, Tylkowska K (1997) Carrot seed market and prospects for carrot seed production in Poland. J Appl Genet 38A:5–12

    Google Scholar 

  • Dyki B, Nowak R, Stepowska A (2010) The influence of flower structures on the seeds productivity of the carrot breeding lines. Veget Crops Res Bull 72:5–13

    Google Scholar 

  • Eisa HM, Wallace DH (1969a) Morphological and anatomical aspects of petaloidy in the carrot (Daucus carota L.). J Am Soc Hort Sci 94:545–548

    Google Scholar 

  • Eisa HM, Wallace DH (1969b) Factors influencing petaloidy expression in the carrot, Daucus carota L. J Am Soc Hort Sci 94:647–649

    Google Scholar 

  • Elen AJJ (1970) A model for identifying “general” B-lines to brown anther type male-sterile carrots. Eucarpia Sect Hort Versailles 41–46

    Google Scholar 

  • Erbar C, Leins P (2004) Sympetaly in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South Afr J Bot 70:458–467

    Article  Google Scholar 

  • Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732

    Article  PubMed  Google Scholar 

  • Fisher JE (1956) Studies on the photoperiodic and thermal control of flowering in carrots. Plant Physiol 31:36

    Google Scholar 

  • Flemion F, Henrickson ET (1949) Further studies on the occurrence of embryoless seeds and immature embryos in the Umbelliferae. Contrib Boyce Thompson Inst 15:291–297

    Google Scholar 

  • Gabelman WH (1956) Male sterility in vegetable breeding. Genetics in plant breeding. In: Brookhaven symposium in biology: genetics in plant breeding, no 9, pp 113–122

    Google Scholar 

  • Galmarini CR, Della Gaspera P (1996) Determinación de requerimientos de pre-vernalizaciónenzanahorias (Daucus carota L.) anuales. In: Actas de la XXI Reunión Argentina de Fisiología Vegetal, Mendoza, Argentina, p 82

    Google Scholar 

  • Galmarini CR, Borgo R, Tizio R (1992) Determination of a pre-vernalization phase in carrot (Daucus carota L.) cv. Flakkee. Turrialba 42:140–142

    Google Scholar 

  • Galmarini C, Borgo R, Gaviola JC, Tizio R (1995) Effect of gibberellic acid on seed production of carrot (Daucus carota L.): effect of different concentrations and application dates on vegetative cycle length and seed yield and quality. Horticultura Argentina 14:47–86

    Google Scholar 

  • Gaviola JC (2013) Effects of sowing and transplant date and planting density of carrot stecklings on seed production. Horticultura Argentina 32:5–13

    Google Scholar 

  • Geddy R, Mahé L, Brown GG (2005) Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. Plant J 41:333–345

    Article  CAS  PubMed  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Ann Rev Plant Biol 59:115–142

    Article  CAS  Google Scholar 

  • Gray D, Steckel JRA (1983a) Some effects of umbel order and harvest date on carrot seed variability and seedling performance. J Hort Sci 58:73–82

    Article  Google Scholar 

  • Gray D, Steckel JRA (1983b) Seed quality in carrots: the effects of seed crop plant density, harvest date and seed grading on seed and seedling variability. J Hort Sci 58:393–401

    Article  Google Scholar 

  • Gray D, Steckel JRA, Ward JA (1983) Studies on carrot seed production: effects of plant density on yield and components of yield. J Hort Sci 58:83–90

    Article  Google Scholar 

  • Gray D, Ward JA, Steckel JRA (1984) Endosperm and embryo development in Daucuc carota L. J Exp Bot 35:459–465

    Article  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Habdas H, Staniaszek M, Szafirowska A (1997) Cytological aspects of low carrot seeds quality. J Appl Genet 38A:193–195

    Google Scholar 

  • Hama E, Takumi S, Ogihara Y, Murai K (2004) Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720

    Article  CAS  PubMed  Google Scholar 

  • Hanschke PE, Gabelmann WH (1963) Digenic control of male sterility in carrots, Daucus carota L. Crop Sci 3:383–386

    Article  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 4(16):154–169

    Article  Google Scholar 

  • Harrington JF (1951) Effect of spacing and size of root on carrot seed yield and germination. Proc Am Soc Hort Sci 58:165–167

    Google Scholar 

  • Harrington JF (1972) Seed storage longevity. In: Kozlowsky TT (ed) Seed biology, vol 3. Academic Press, New York, pp 145–245

    Google Scholar 

  • Hawthorn RL (1952) Interrelations of soil moisture, nitrogen, and spacing in carrot seed production. Proc Am Soc Hort Sci 60:321–326

    Google Scholar 

  • Hawthorn RL, Bohart GE, Toole EH, Nye WP, Levin MD (1960) Carrot seed production as affected by insect pollination. Bull Utah Agric Exp Station 422:18

    Google Scholar 

  • Hawthorn RL, Toole EH, Toole VK (1962) Yield and viability of carrot seeds as affected by position of umbel and time of harvest. Proc Am Soc Hort Sci 80:401–407

    Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER (2007) Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24:465–481

    Article  PubMed  CAS  Google Scholar 

  • Hiller LK, Kelly WC (1979) Post-vernalization temperature effects on seedstalk elongation and flowering in carrots, Daucus carota L. J Am Soc Hort Sci 104:253–257

    Google Scholar 

  • Holdsworth M, Kurup S, McKibbin R (1999) Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends Plant Sci 4:275–280

    Article  Google Scholar 

  • Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161

    Article  CAS  Google Scholar 

  • Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53:1575–1580

    Article  CAS  PubMed  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Immink RG, Kaufmann K, Angenent GC (2010) The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21:87–93

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner D, Simon P (2012) De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol 12:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DF (1950) The interrelation of plasmagenes and chromogens in pollen production in maize. Genetics 35:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce R, Steckel A, Gray D, Rowse HR (1989) Relationships between indices of seed maturity and carrot seed quality. Ann Appl Biol 114:177–183

    Article  Google Scholar 

  • Kanzaki H, Takeda M, Kameya T (1991) Sequence analysis of a mitochondrial DNA fragment isolated from cultured cells of carrot cytoplasmic male-sterile strain. Jpn J Genet 66:719–724

    Article  CAS  PubMed  Google Scholar 

  • Keilwagen J, Lehnert H, Berner T, Budahn H, Nothnagel T, Ulrich D, Dunemann F (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Sung S (2013) Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant Cell 25:454–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa J, Posluszny U, Gerrath JM, Wolyn DJ (1994) Developmental and morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. Sex Plant Reprod 7:41–50

    Article  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuth P (1898) Handbuch der Blütenbiologie I-III. Engelmann, Leipzig

    Google Scholar 

  • Kofer W, Glimelius K, Bonnett HT (1991) Modifications of mitochondrial DNA cause changes in floral development in homeotic-like mutants of tobacco. Plant Cell 3:759–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430

    Article  CAS  Google Scholar 

  • Kononkov PF, Mokhov AI (1972) Comparison of the biology of flowering and fertilization in sterile and fertile forms of carrot. Nauch Dokl Vyssh Shikoly Biol 12:73

    Google Scholar 

  • Koul P, Koul AK, Hamal IA (1989) Reproductive biology of wild and cultivated carrot (Daucus carota L.). New Phytol 112:437–443

    Article  Google Scholar 

  • Kozik E, Nowak R, Nowakowska M, Dyki B (2012) Level of sterility and morphological flower differentiation of petaloid male-sterile plants of carrot. J Agric Sci 4:187–194

    Google Scholar 

  • Kuan TL, Minsavage GV, Gabrielson RL (1985) Detection of Xanthomonas campestris pv. carotae in carrot seed. Plant Dis 69:758–760

    Article  Google Scholar 

  • Lackie S, Yeung EC (1996) Zygotic embryo development in Daucus carota. Can J Bot 74:990–998

    Article  Google Scholar 

  • Lamborn E, Ollerton J (2000) Experimental assessment of the functional morphology of inflorescences of Daucus carota (Apiaceae): testing the ‘fly catcher effect’. Funct Ecol 14:445–454

    Article  Google Scholar 

  • Lamprecht H (1951) Über partielle und Semisterilität, insbesondere bei Pisum sativum. Z Pflanzenzücht 35:422–433

    Google Scholar 

  • Lan TH, Paterson AH (2000) Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics 155:1927–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Dily F, Duyme M, Villeneuve F (1991) Carbohydrate composition of carrot (Daucus carota L.) during field development and cold moisture storage. In: Eucarpia carrot 91—proceedings of the IVth meeting on breeding of carrots, pp 113–115

    Google Scholar 

  • Leins P, Erbar C (1997) Floral developmental studies: some old and new questions. Int J Plant Sci 158:3–12

    Article  Google Scholar 

  • Lesprit E (1991) Genetic evaluation of 10 male-sterile lines in carrot (Daucus carota L.). 1. Seed yield potential. In: Eucarpia carrot 91—proceedings of the IVth meeting on breeding of carrots, pp 55–67

    Google Scholar 

  • Linke B, Börner T (2005) Mitochondrial effects on flower and pollen development. Mitochondrion 5:389–402

    Article  CAS  PubMed  Google Scholar 

  • Linke B, Nothnagel T, Börner T (1999) Morphological characterization of modified flower morphology of three novel alloplasmic male sterile carrot sources. Plant Breeding 118:543–548

    Article  Google Scholar 

  • Linke B, Nothnagel T, Börner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    Article  CAS  PubMed  Google Scholar 

  • Litvinova MK (1973) Cytoembryological investigations of the male sterility in carrot. Nauch Tr Vononezh USSR 56:14–18

    Google Scholar 

  • Litvinova MK, Klyuchinkova ZA, Ermokova NA, Kuznetsov YUP (1980) Study of sterile families of carrot used in breeding for heterosis. Genet Selekt Semenovod Saratov USSR 89:97–100

    Google Scholar 

  • Liu Z, Mara C (2010) Regulatory mechanisms for floral homeotic expression. Semin Cell Dev Biol 21:80–86

    Article  PubMed  CAS  Google Scholar 

  • Mandel JR, McCauley DE (2015) Pervasive mitochondrial sequence heteroplasmy in natural populations of wild carrot, Daucus carota spp. carota L. PLoS One. https://doi.org/10.1371/journal.pone.0136303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandel JR, McAssey EV, Roland KM, McCauley DE (2012) Mitochondrial gene diversity associated with the atp9 stop codon in natural populations of wild carrot (Daucus carota ssp. carota). J Hered 103:418–425

    Article  CAS  PubMed  Google Scholar 

  • Marienfeld JR, Unseld M, Brandt P, Brennicke A (1997) Mosaic open reading frames in the Arabidopsis thaliana mitochondrial genome. Biol Chem 378:859–862

    Article  CAS  PubMed  Google Scholar 

  • Mas F, Harper A, Horner R, Welsh T, Jaksons P, Suckling DM (2018) The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield. J Sci Food Agric 98:4445–4453. https://doi.org/10.1002/jsfa.8967

    Article  CAS  PubMed  Google Scholar 

  • McCollum GD (1966) Occurrence of petaloid stamens in wild carrot (Daucus carota L.) from Sweden. Swed Econ Bot 2:361–367

    Article  Google Scholar 

  • Mehring-Lemper M (1987) Genetisch-züchterische Untersuchungen zur Schaffung von Hybridsorten bei Möhren (Daucucs carota L.). Dissertation, University of Hannover

    Google Scholar 

  • Meijer EA, De Vries SC, Sterk P, Gardella DWJ, Wirtz KWA, Hendriks T (1993) Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Mol Cell Biochem 123:159–166

    Article  CAS  PubMed  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalik B (1971) Studia genetyczne nad meska bezplodnoscia u marchwi (Daucus carota L.). Plant Breed Acclimatization Seed Prod 15:446–474

    Google Scholar 

  • Michalik B (1974) Partial male sterility in carrots. In: Proceedings of the 19th international horticultural congresss I. Section VII, vegetables, pp 721–761

    Google Scholar 

  • Michalik B (1978) Stability of male sterility in carrot under different growth conditions. Bull Acad Sci Ser Biol 26:827–832

    Google Scholar 

  • Miranda RM, dos Santos Dias DCF, de Toledo Picoli EA, Pereira da Silva P, Nascimento WM (2017) Physiological quality, anatomy and histochemistry during the development of carrot seeds (Daucus carota L.). Ciênc Agrotec 41:169–180

    Article  CAS  Google Scholar 

  • Mockute D, Nivinskiene O (2004) The sabinene chemotype of essential oil of seeds of Daucus carota L. ssp. carota growing wild in Lithuania. J Essent Oil Res 16:227–281

    Article  Google Scholar 

  • Morelock TE (1974) Influence of cytoplasmic sources of expression of male sterility in carrot D. carota L. Dissertation, University of Wiscosin

    Google Scholar 

  • Morelock TE, Simon PW, Peterson CE (1996) Wisconsin wild: another petaloid male-sterile cytoplasm for carrot. HortScience 31:887–888

    Article  Google Scholar 

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear–cytoplasm interaction in wheat. Plant J 29:169–181

    Article  PubMed  Google Scholar 

  • Nagarajan S, Pandita VK (2001) Effect of umbel shape on root characters and subsequent seed yield in Asiatic carrot (Daucus carota). Ind J Agric Sci 71:98–101

    Google Scholar 

  • Nakajima Y, Yamamoto T, Muranaka T, Oeda K (1999) Genetic variation of petaloid male-sterile cytoplasm of carrots revealed by sequence-tagged sites (STSs). Theor Appl Genet 99:837–843

    Article  CAS  Google Scholar 

  • Nakajima Y, Yamamoto T, Muranaka T, Oeda K (2001) A novel orfB-related gene of carrot mitochondrial genomes that is associated with homeotic cytoplasmic male sterility (CMS). Plant Mol Biol 46:99–107

    Article  CAS  PubMed  Google Scholar 

  • Nascimento WM, Vieira JV, Alvares MC (2003) Physiological maturity of carrot seeds cv. Alvorada under tropical conditions. Acta Hort 607:49–51

    Article  Google Scholar 

  • Nieuwhof M (1984) Effect of gibberellic acid on bolting and flowering of carrot (Daucus carota L.). Sci Hortic 24:211–219

    Article  Google Scholar 

  • Nothnagel T, Straka P, Budahn H (1997) Development of new cms-systems for carrot breeding. J Appl Genet 38A:172–177

    Google Scholar 

  • Nothnagel T, Straka P, Linke B (2000) Male sterility in populations of Daucus and the development of alloplasmic male-sterile carrot lines. Plant Breeding 119:145–152

    Article  CAS  Google Scholar 

  • Osborn TC, Kole C, Parkin IA, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou CG, Mao JH, Liu LJ, Li CJ, Ren HF, Zhao ZW, Zhuang FY (2017) Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biol 19:286–297

    Article  CAS  PubMed  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Pereira RS, Nascimento WM, Vieira JV (2008) Carrot seed germination and vigor in response to temperature and umbel orders. Sci Agric (Piracicaba, Braz.) 65:145–150

    Article  Google Scholar 

  • Pérez-Bañón C, Petanidou T, Marcos-Garcia MA (2007) Pollination in small islands by occasional visitors: the case of Daucus carota subsp. commutatus (Apiaceae) in the Columbretes archipelago. Spain. Plant Ecology 192:133–151

    Article  Google Scholar 

  • Peterson CE, Simon PW (1986) Carrot breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI, Westport, CT, pp 321–356

    Google Scholar 

  • Pryor BM, Gilbertson RL (2001) A PCR-based assay for detection of Alternaria radicina on carrot seed. Plant Dis 85:18–23

    Article  CAS  PubMed  Google Scholar 

  • Pryor BM, Davis RM, Gilbertson RL (1994) Detection and eradication of Alternaria radicina on carrot seed. Plant Dis 78:452–456

    Article  CAS  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinert J (1958) Untersuchungen über die Morphogenese an Gewebekulturen. Ber Dtsch Bot Ges 71:15

    Google Scholar 

  • Reuther K, Claßen-Bockhoff R (2013) Andromonoecy and developmental plasticity in Chaerophyllum bulbosum (Apiaceae-Apioideae). Ann Bot 112:1495–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Robison MM, Wolyn DJ (2002) Complex organization of the mitochondrial genome of petaloid CMS carrot. Mol Genet Genomics 268:232–239

    Article  CAS  PubMed  Google Scholar 

  • Robison MM, Wolyn DJ (2005) A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L.). Curr Genet 47:57–66

    Article  CAS  PubMed  Google Scholar 

  • Robison MM, Wolyn DJ (2006a) Petaloid-type cms in carrot is not associated with expression of atp8 (orfB). Theor Appl Genet 112:1496–1502

    Article  CAS  PubMed  Google Scholar 

  • Robison MM, Wolyn DJ (2006b) A 60 kDa COX1 protein in mitochondria of carrot irrespective of the presence of C-terminal extensions in the cox1 reading frames. Mol Gen Genomics 275:68–73

    Article  CAS  Google Scholar 

  • Rong J, Janson S, Umehara M, Ono M, Vrieling K (2010) Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations. Ann Bot 106:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas U, Mei Y, Xie Q, Banta JA, Zhou RW, Seufferheld G, Gerard S, Chou L, Bhambhra N, Parks JD, Flowers JM, McClung CR, Hanzawa Y, Purugganan MD (2014) Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS. Nat Commun 5:3651

    Article  CAS  PubMed  Google Scholar 

  • Roth E (1981) Zur Problematik der Inzuchtwirkung bei Ausgangslinien der Speisemöhre (Daucus carota L.). Tag Ber Akad Landwirtsch Wiss DDR 191:105–116

    Google Scholar 

  • Rubashevskaia MK (1931) Observation on the wild carrot in cultivation and under natural conditions. Bull Appl Bot Genet Plant Breeding 26:194–252

    Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable umbelliferae. CABI Publishing, New York

    Google Scholar 

  • Rurek M, Szklarczyk M, Adamczyk N, Michalik B, Augustyniak H (2001) Differences in editing of mitochondrial nad3 transcripts from CMS and fertile carrots. Acta Biochim Pol 48:711–717

    CAS  PubMed  Google Scholar 

  • Sakr ES, Thompson HC (1942) Effect of temperature and photoperiod on seedstalk development in carrots. Proc Am Soc Hort Sci 41:343–346

    Google Scholar 

  • Sandin NH (1980) Optimum harvest time for Daucus carota (carrot) seed crops in Sweden. In: Hebblethwaite PD (ed) Seed production. Butterworths, London, pp 553–559

    Google Scholar 

  • Scheike R, Gerold E, Brennicke A, Mehring-Lemper M, Wricke G (1992) Unique patterns of mitochondrial genes, transcripts and proteins in different male-sterile cytoplasms of Daucus carota. Theor Appl Genet 83:419–427

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Schwab B, Neumann KH (1975) Influence of gibberellic sprays on the flowering carrots. Z Pflanzenernähr Bodenk 1:13–18

    Article  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  CAS  PubMed  Google Scholar 

  • Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998) CABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 39:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon YS (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of plant breeding: vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 327–357

    Google Scholar 

  • Sinha SH, Chakrabacti AK (1992) Insect pollination in carrot seed crop. Seed Res 20:37–40

    Google Scholar 

  • Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 109:1560–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staes G (1889) Die Blumen von Daucus carota. Bot Jahrb 1:124

    Google Scholar 

  • Staniszewska M, Kula J, Wieczorkiewicz M, Kusewicz D (2005) Essential oils of wild and cultivated carrots—the chemical composition and antimicrobial activity. J Essent Oil Res 17:579–583

    Article  CAS  Google Scholar 

  • Stein M, Weit E, Wolfram H (1985) Zuchtmethodische Aspekte der Nutzung der Pollensterilität bei Zwiebeln und Möhren. Arch Gartenbau Berlin 33:345–353

    Google Scholar 

  • Steinborn R, Weihe A, Boerner T (1992) Mitochondrial genome diversity within a cultivar of Daucus carota ssp. sativus revealed by restriction fragment analysis of single plants. Plant Breeding 109:75–77

    Article  CAS  Google Scholar 

  • Steinborn R, Linke B, Nothnagel T, Boerner T (1995) Inheritance of chloroplast and mitochondrial DNA in alloplasmic forms of the genus Daucus. Theor Appl Genet 91:632–638

    Article  CAS  PubMed  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultures cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Strandberg JO (1988) Detection of Alternaria dauci on carrot seed. Plant Dis 72:531–534

    Article  Google Scholar 

  • Struckmeyer BE, Simon PW (1986) Anatomy of fertile and male-sterile carrot flowers from different genetic sources. J Am Soc Hort Sci 111:965–968

    Google Scholar 

  • Sylwester EP (1960) Beware of wild carrot. Hoard’s Dairyman 105:330–331

    Google Scholar 

  • Szklarczyk M, Oczkowski M, Augustyniak H, Linke B, Börner T, Michalik B (2000) Organisation and expression of mitochondrial atp9 genes from CMS and fertile carrots. Theor Appl Genet 100:263–270

    Article  CAS  Google Scholar 

  • Szklarczyk M, Szymanski M, Wójik-Jagla M, Simon PW, Weihe A, Börner T (2014) Mitochondrial atp9 genes from petaloid male-sterile and male-fertile carrots differ in their status of heteroplasmy recombination involvement, post-transcriptional processing as well as accumulation of RNA and protein product. Theor Appl Genet 127:1689–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan GF, Wang F, Zhang XY, Xiong AS (2018) Different lengths, copies and expression levels of the mitochondrial atp6 gene in male sterile and fertile lines of carrot (Daucus carota L.). Mitochondrial DNA Part A 29:446–454

    Article  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  CAS  PubMed  Google Scholar 

  • Theissen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr Opin Genet Dev 5:628–639

    Article  CAS  PubMed  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Article  CAS  PubMed  Google Scholar 

  • Thomas TL, Wilde D (1985) Analysis of gene expression in carrot somatic embryos. In: Terzi M, Pitto L, Sung ZR (eds) Somatic embryogenesis. IPRA, Rome, pp 77–85

    Google Scholar 

  • Thomas TL, Wilde D (1987) Analysis of carrot somatic embryo gene expression programs. In: Green CE, Folmers DA, Hackett WT, Biesboer DD (eds) Plant biology. Alan R. Liss, New York, pp 83–93

    Google Scholar 

  • Thompson DS (1961) Studies on the inheritance of male-sterility in carrot, Daucus carota L. var. sativa. Proc Am Soc Hort Sci 78:332–338

    Google Scholar 

  • Timin NI, Vasilevsky VA (1997) Genetic peculiarities of carrot (Daucus carota L.). J Appl Genet 38A:232–236

    Google Scholar 

  • Trivedi RS, Hampton JG, Townshend JM, Jaspers MV, Ridgway HJ (2010) First report of Alternaria carotiincultae on carrot seed produced in New Zealand. Plant Dis 94(1168):3

    Google Scholar 

  • Umesh KC, Davis RM, Gilbertson RL (1998) Seed contamination thresholds for development of carrot bacterial blight caused by Xanthomonas campestris pv. carotae. Plant Dis 82:1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve F, Latour F (2017) Influence of sowing time and chilling exposure on flower induction in carrot (Daucus carota L.). Acta Hortic 1153:47–54

    Google Scholar 

  • Warenstorf C (1896) Blütenbiologische Beobachtungen aus der Ruppiner Flora im Jahr 1895. Bot Ver Germany 38:15–63

    Google Scholar 

  • Webb CJ (1981) Andromonoecism, protandry, and sexual selection in Umbelliferae. New Zeal J Bot 19:335–338

    Article  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Weit E (1979) Investigations on line maintainance in carrot. Tag Ber Akad Landwirtsch Wiss DDR 168:421–430

    Google Scholar 

  • Welch JE, Grimball EI (1947) Male sterility in carrot. Science 12:594

    Article  Google Scholar 

  • Westmoreland D, Muntan C (1996) The influence of dark central florets on insect attraction and fruit production in Queen Anne’s Lace (Daucus carota L.). Am Midl Nat 135:122–129

    Article  Google Scholar 

  • Wohlfeiler J, Alessandro MS, Cavagnaro PF, Galmarini CR (2019) Multiallelic digenic control of vernalization requirement in carrot (Daucus carota L.). Euphytica 215:37–47. https://doi.org/10.1007/s10681-019-2360-2

  • Wolyn DJ, Chahal A (1998) Nuclear and cytoplasmic interactions for petaloid male sterile accessions of wild carrot (Daucus carota L). J Am Soc Hort Sci 123:849–853

    Article  CAS  Google Scholar 

  • Wurtele ES, Wang H, Durgerlan S, Nikolau BJ, Ulrich TH (1993) Characterization of a gene that is expressed early in somatic embryogenesis of Daucus carota. Plant Physiol 102:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahyaa M, Ibdah M, Mazouk S, Ibdah M (2017) Profiling of the terpene metabolome in carrot fruits of wild (Daucus carota L. ssp. carota) accessions and characterization of a geraniol synthase. J Agric Food Chem 66:2378–2386

    Article  CAS  Google Scholar 

  • Yamamoto T, Nakajima Y, Oeda K (2000) Morphological changes in homeotic cytoplasmic male-sterile carrots combined with fertile cytoplasm by asymmetrical cell fusion. Plant Cell Rep 19:363–370

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:640–1644

    Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yazawa K, Kamada H (2007) Identification and characterization of carrot HAP factors that form a complex with the embryo-specific transcription factor C-LEC1. J Exp Bot 58:3819–3828

    Article  CAS  PubMed  Google Scholar 

  • Yazawa K, Takahata K, Kamada H (2004) Isolation of the gene that encodes carrot leafy cotyledon 1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiol Biochem 42:215–223

    Article  CAS  PubMed  Google Scholar 

  • Zahn LM, Leebens-Mack J, DePamphilis CW, Ma H, Theissen G (2005) To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered 96:225–240

    Article  CAS  PubMed  Google Scholar 

  • Zenkteler M (1962) Microsporogensis and tapetal development in normal and male-sterile carrots (Daucus carota). Am J Bot 49:341–348

    Article  Google Scholar 

  • Zhan Z, Zhang C, Zhang H, Li X, Wen C, Liang Y (2017) Molecular cloning, expression analysis, and subcellular localization of FLOWERING LOCUS T (FT) in carrot (Daucus carota L.). Mol Breeding 37:149–158

    Article  CAS  Google Scholar 

  • Zhang S, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    Article  CAS  PubMed  Google Scholar 

  • Zhidkova NI, Bunin MS, Kalinia LM, Romanyak AN, Tsvetkova MA, Asyakin BP (1991) The main directions and achievements in carrot breeding in the USSR. In: Bonnet A (ed) Eucarpia carrot 91, Avignon, Montfavet, France, pp 31–39

    Google Scholar 

  • Zubko MK, Zubko EI, Ruban AV, Adler K, Mock HP, Misera S, Gleba YY, Grimm B (2001) Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+ Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. Plant J 25:627–639

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nothnagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linke, B., Alessandro, M.S., Galmarini, C.R., Nothnagel, T. (2019). Carrot Floral Development and Reproductive Biology. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_3

Download citation

Publish with us

Policies and ethics