Skip to main content
Log in

Comparison of a novel tomato sucrose synthase, SlSUS4, with previously described SlSUS isoforms reveals distinct sequence features and differential expression patterns in association with stem maturation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sucrose synthase (SUS) plays a role in many contexts of sugar metabolism, including low-oxygen and low-ATP respiration and the synthesis of cellulose. In tomato (Solanum lycopersicum), as in many plants, SUS is encoded by genes at several independent loci. Here, we report the isolation of a novel tomato SUS (SlSUS) isoform, SlSUS4, that is homologous to potato SUS isoform 1 (StSUS1) and also shows greater homology to SUS isoforms of other plants than to the other tomato SUS isoforms. All three tomato isoforms are very similar in genomic structure and sequence, yet each is located on a separate chromosome. Real-time expression analysis of the three distinct isoforms revealed widely varying patterns of expression, in terms of both tissue specificity and overall magnitude of expression. Analysis of SlSUS expression along the tomato stem revealed opposing expression gradients for two of the SlSUS isoforms, in apparent correlation with vascular tissue maturation. Western-blot analysis of SlSUS protein showed an increasing SlSUS concentration gradient along the developmental axis of the tomato stem, with the protein concentrated mainly in the vascular tissue of the stem. These gene expression and protein accumulation patterns indicate that each isoform may play a discrete role in the development of tomato plants, most notably in the development of vascular tissue in the stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SUS:

Sucrose synthase

IL:

Introgression line

RFLP:

Restriction fragment length polymorphism

FRK:

Fructokinases

References

  • Angeles-Nunez JG, Tiessen A (2010) Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232:701–718

    Article  CAS  PubMed  Google Scholar 

  • Anguenot R, Yelle S, Nguyen-Quoc B (1999) Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys 365:163–169

    Article  CAS  PubMed  Google Scholar 

  • Barratt DH, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    Article  CAS  PubMed  Google Scholar 

  • Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Chengappa S, Loader N, Shields R (1998) Cloning, expression, and mapping of a second tomato sucrose synthase gene, Sus3. Plant Physiol 118:1533

    Article  Google Scholar 

  • Chengappa S, Guilleroux M, Phillips W, Shields R (1999) Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol Biol 40:213–221

    Article  CAS  PubMed  Google Scholar 

  • Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP (2007) The TIGR plant transcript assemblies database. Nucleic Acids Res 35:D846–D851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chourey PS, Taliercio EW, Carlson SJ, Ruan YL (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259:88–96

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust MA, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407–2418

    PubMed Central  PubMed  Google Scholar 

  • Duncan KA, Hardin SC, Huber SC (2006) The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol 47:959–971

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  Google Scholar 

  • Eshed Y, Abu Abied M, Saranga Y, Zamir D (1992) Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor Appl Genet 83:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7:1369–1385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu H, Kim SY, Park WD (1995a) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7:1387–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu H, Kim SY, Park WD (1995b) A potato Sus3 sucrose synthase gene contains a context-dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell 7:1395–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51:294–301

    Article  CAS  PubMed  Google Scholar 

  • German MA, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Ioffe M, Shahak Y, Schaffer AA, Granot D (2003) Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J 34:837–846

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hanggi E, Fleming AJ (2001) Sucrose synthase expression pattern in young maize leaves: implications for phloem transport. Planta 214:326–329

    CAS  PubMed  Google Scholar 

  • Hardin SC, Tang GQ, Scholz A, Holtgraewe D, Winter H, Huber SC (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J 35:588–603

    Article  CAS  PubMed  Google Scholar 

  • Hohnjec N, Perlick AM, Puhler A, Kuster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact 16:903–915

    Article  CAS  PubMed  Google Scholar 

  • Le Hir R, Pelleschi-Travier S, Viemont JD, LeDuc N (2005) Sucrose synthase expression pattern in the rhythmically growing shoot of common oak (Quercus robur L.). Ann For Sci 62:585–591

    Article  CAS  Google Scholar 

  • MacGregor EA (2002) Possible structure and active site residues of starch, glycogen, and sucrose synthases. J Protein Chem 21:297–306

    Article  CAS  PubMed  Google Scholar 

  • Nolte KD, Koch KE (1993) Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol 129:1119–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, Fleming AJ (2001) Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristem. Plant J 25:663–674

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salanoubat M, Belliard G (1987) Molecular-cloning and sequencing of sucrose synthase cDNA from potato (Solanum tuberosum L.): preliminary characterization of sucrose synthase messenger mRNA distribution. Gene 60:47–56

    Article  CAS  PubMed  Google Scholar 

  • Schafer WE, Rohwer JM, Botha FC (2004) Protein-level expression and localization of sucrose synthase in the sugarcane culm. Physiol Plant 121:187–195

    Article  PubMed  Google Scholar 

  • Schaffer AA, Petreikov M (1997) Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol 113:739–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi K, Fu LJ, Dong DK, Zhou YH, Yu JQ (2008) Decreased energy synthesis is partially compensated by a switch to sucrose synthase pathway of sucrose degradation in restricted root of tomato plants. Plant Physiol Biochem 46:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Sung SJ, Kormanik PP, Black CC (1993) Vascular cambial sucrose metabolism and growth in loblolly pine (Pinus taeda L.) in relation to transplanting stress. Tree Physiol 12:243–258

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson PT, Duke ER, Nolte KD, Koch KE (1991) Sucrose synthase and invertase in isolated vascular bundles. Plant Physiol 97:1249–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res 28:71–117

    Article  CAS  Google Scholar 

  • Wang F, Smith AG, Brenner ML (1993) Isolation and sequencing of tomato fruit sucrose synthase cDNA. Plant Physiol 103:1463–1464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wienkoop S, Larrainzar E, Glinski M, Gonzalez EM, Arrese-Igor C, Weckwerth W (2008) Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. J Exp Bot 59:3307–3315

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35:253–289

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Huber JL, Huber SC (1997) Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420:151–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Leonid Mourakhovsky for his dedicated and diligent care of the tomato plants grown for this research. This research was supported by Research Grant No. 890/06 from The Israel Science Foundation and by Research Grants No. IS-3397-06 and No. CA-9100-06 from BARD, the United States–Israel Binational Agricultural and Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Granot.

Additional information

Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 123/2010 series.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Supplementary material 2 (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goren, S., Huber, S.C. & Granot, D. Comparison of a novel tomato sucrose synthase, SlSUS4, with previously described SlSUS isoforms reveals distinct sequence features and differential expression patterns in association with stem maturation. Planta 233, 1011–1023 (2011). https://doi.org/10.1007/s00425-011-1356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1356-5

Keywords

Navigation