Skip to main content
Log in

Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Mannans are hemicellulosic polysaccharides in the plant primary cell wall (CW). Mature seeds, specially their endosperm cells, have CWs rich in mannan-based polymers that confer a strong mechanical resistance for the radicle protrusion upon germination. The rupture of the seed coat and endosperm are two sequential events during the germination of Arabidopsis thaliana. Endo-β-mannanases (MAN; EC. 3.2.1.78) are hydrolytic enzymes that catalyze cleavage of β1 → 4 bonds in the mannan-polymer. In the genome of Arabidopsis, the endo-β-mannanase (MAN) family is represented by eight members. The expression of these eight MAN genes has been systematically explored in different organs of this plant and only four of them (AtMAN7, AtMAN6, AtMAN2 and AtMAN5) are expressed in the germinating seeds. Moreover, in situ hybridization analysis shows that their transcript accumulation is restricted to the micropylar endosperm and to the radicle and this expression disappears soon after radicle emergence. T-DNA insertion mutants in these genes (K.O. MAN7, K.O. MAN6, K.O. MAN5), except that corresponding to AtMAN2 (K.O. MAN2), germinate later than the wild type (Wt). K.O. MAN6 is the most affected in the germination time course with a t 50 almost double than that of the Wt. These data suggest that AtMAN7, AtMAN5 and specially AtMAN6 are important for the germination of A. thaliana seeds by facilitating the hydrolysis of the mannan-rich endosperm cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CW:

Cell-wall

ECWE:

Enhancing cell wall extensibility

MAN:

Endo-β-mannanase

ME:

Micropylar endosperm

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Arana MV, de Miguel LC, Sánchez RA (2006) A phytochrome dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds. Planta 223:847–857

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acid Res 34:369–373

    Article  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Belotserkovsky H, Berger Y, Shahar R, Wolf S (2007) Specific role of LeMAN2 in the control of seed germination exposed by overexpression of the LeMAN3 gene in tomato plants. Planta 227:199–209

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Breaking down the walls: a role for endo-β-mannanase in release from seed dormancy? Trends Plant Sci 2:464–469

    Article  Google Scholar 

  • Bewley JD, Burton RA, Morohashi Y, Fincher GB (1997) Molecular cloning of a cDNA encoding a (1 → 4)-β-mannan endo-hydrolase from the seeds of germinated tomato (Lycopersicon esculentum). Planta 203:454–459

    Article  CAS  PubMed  Google Scholar 

  • da Silva EAA, Toorop PE, van Aelst AC, Hilhorst HWM (2004) Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 220:251–261

    Article  CAS  PubMed  Google Scholar 

  • Debeaujon I, Lepiniec L, Pourcel L, Routaboul J-M (2007) Seed development, dormancy and germination. In: Bradford K, Nonogaki H (eds) Seed coat development and dormancy. Blackwell, Oxford, pp 25–49

    Chapter  Google Scholar 

  • Dubreucq B, Berger N, Vincent E, Boisson M, Pelletier G, Caboche M, Lepiniec L (2003) The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant J 23:643–652

    Article  Google Scholar 

  • Emmanuelson O, Brunnak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  Google Scholar 

  • Ferrandiz C, Liljegren S, Yanofsky M (2000) FRUITFULL negatively regulates the SHATTERPROOF genes during Arabidopsis fruit development. Science 289:436–438

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage W, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Googland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acid Res 31:3784–3788

    Article  CAS  PubMed  Google Scholar 

  • Gong XM, Bewley JD (2007) Sorting out the LeMANs: endo-β-mannanase genes and their encoded proteins in tomato. Seed Sci Res 17:143–154

    Article  CAS  Google Scholar 

  • Gong XM, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-β-mannanase activity. Ann Bot 96:1–9

    Article  Google Scholar 

  • Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Soppe WJJ, Bentsink L (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Homrichhausen TM, Hewitt JR, Nonogaki H (2003) Endo-β-mannanase activity is associated with the completion of embryogenesis in imbibed carrot (Daucus carota L.) seeds. Seed Sci Res 13:219–227

    Article  CAS  Google Scholar 

  • Iglesias-Fernández R, Matilla AJ (2009) After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellins pathways during early imbibitions of Sisymbrium officinale L. seeds. J Exp Bot 6:1645–1661

    Article  Google Scholar 

  • Iglesias-Fernández R, Matilla AJ (2010) Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta 231:653–664

    Article  PubMed  Google Scholar 

  • Ikuma H, Thimann KV (1963) The role of the seed-coats in germination of photosensitive lettuce seeds. Plant Cell Physiol 4:169–185

    Google Scholar 

  • Joshi CP, Zhou H, Huang XQ, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Leubner-Metzger G, Meins F Jr (2000) Sense transformation reveals a novel role for class I β-1,3-glucanases in tobacco seed germination. Plant J 23:215–221

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jones J, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  CAS  PubMed  Google Scholar 

  • Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  CAS  PubMed  Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    Article  CAS  PubMed  Google Scholar 

  • Liu P-P, Koizuka N, Homrichhausen TM, Hewitt JR, Martin RC, Nonogaki H (2005) Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant J 41:936–944

    Article  CAS  PubMed  Google Scholar 

  • Matilla AJ, Matilla-Vázquez MA (2008) Involvement of ethylene in seed physiology. Plant Sci 175:87–97

    Article  CAS  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  PubMed  Google Scholar 

  • Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–977

    Article  PubMed  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress (Lepidium sativum L.) seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed  Google Scholar 

  • Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G (2010) Proteomics reveal tissue-specific features of the cress (Lepidium sativum L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 10:406–416

    Article  PubMed  Google Scholar 

  • Nonogaki H, Morohashi Y (1999) Temporal and spatial pattern of the development of endo-β-mannanase activity in germinating and germinated seeds. J Exp Bot 50:1307–1313

    Article  CAS  Google Scholar 

  • Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-beta-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H, Chen F, Bradford KJ (2007) Mechanisms and genes involved in germination “senso stricto”. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 264–304

    Chapter  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci. doi:10.1016/j.plantsci.2010.02.010

  • Penfield S, Li Y, Gilday A, Graham S, Graham I (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination in the endosperm. Plant Cell 18:1887–1899

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acid Res 29:2002–2007

    Article  Google Scholar 

  • Ren Y, Bewley JD, Wang X (2008) Protein and gene expression patterns of endo-β-mannanase following germination of rice. Seed Sci Res 18:139–149

    Article  CAS  Google Scholar 

  • Rodríguez-Gacio MC, Matilla-Vázquez MA, Matilla AJ (2009) Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signal Behav 4:1035–1048

    Article  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  CAS  PubMed  Google Scholar 

  • Sánchez RA, de Miguel L (1992) Phytochrome promotion of mannan-degrading enzyme activities in the micropylar endosperm of Datura ferox seeds requires the presence of embryo and gibberellin synthesis. Seed Sci Res 7:27–33

    Google Scholar 

  • Schröder R, Wegrzyn TF, Sharma NN, Atkinson RG (2006) LeMAN4 endo-β-mannanase from ripe tomato fruit has dual enzyme activity and can act as a mannan transglycosylase and hydrolase. Planta 224:1091–1102

    Article  PubMed  Google Scholar 

  • Schröder R, Atkinson RG, Redgwell RJ (2009) Re-interpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Ann Bot 104:197–204

    Article  PubMed  Google Scholar 

  • Sliwinska E, Bassel GW, Bewley JD (2009) Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocoty. J Exp Bot 60:3587–3594

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar C (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Toorop PE, Bewley JD, Hilhorst HWM (1996) Endo-β-mannanase isoforms are present in the endosperm and embryo of tomato seeds, but are not essentially linked to the completion of germination. Planta 200:153–158

    Article  Google Scholar 

  • Toorop PE, van Aelst AC, Hilhorst HWM (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. J Exp Bot 51:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing and intrusive phase to accomplish a quiescent state. Int J Dev Biol 49:645–651

    Article  CAS  PubMed  Google Scholar 

  • Wang AX, Li JR, Bewley JD (2004) Molecular cloning and characterization of an endo-β-mannanase gene expressed in the lettuce endosperm following radicle emergence. Seed Sci Res 14:267–276

    Article  CAS  Google Scholar 

  • Wu CT, Leubner-Metzger G, Meins F Jr, Bradford KJ (2001) Class I β-1,3-glucanases and chitinases are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 126:1299–1313

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Yang X, Lai J, Lin H, Cheng Z-M, Nonogaki H, Chen F (2007) The endo-β mannanase gene families in Arabidopsis, rice, and poplar. Funct Integr Genom 7:1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from Ministerio de Ciencia e Innovación (MICINN, Spain) (CGL2004-01996; CGL2009-11425 and Consolider CSD2007-00057). R I–F and C B–S are supported by post-doctoral contracts from CSD2007-00057 and JdC-UPM (BFU2006-07258), respectively. We thank B. Lueiro for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Matilla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias-Fernández, R., Rodríguez-Gacio, M.C., Barrero-Sicilia, C. et al. Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta 233, 25–36 (2011). https://doi.org/10.1007/s00425-010-1257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1257-z

Keywords

Navigation