Skip to main content
Log in

Differential expression of α-l-arabinofuranosidases during maize (Zea mays L.) root elongation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls.

Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-l-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-l-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABF:

Arabinofuranosidase

AXAH:

Arabinoxylan arabinofuranohydrolase

GH:

Glycosyl hydrolase

References

  • Andrewartha KA, Phillips DR, Stone BA (1979) Solution properties of wheat flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr Res 77:191–204

    Article  CAS  Google Scholar 

  • Biely P, Ahlgren JA, Leathers TD, Greene RV, Cotta MA (2003) Aryl-glycosidase activities in germinating maize. Cereal Chem 80:144–147

    Article  CAS  Google Scholar 

  • Bosch M, Mayer CD, Cookson A, Donnison IS (2011) Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. J Exp Bot 62:3545–3561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC (1984) Cell wall development in maize coleoptiles. Plant Physiol 76:205–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Stam M, Blanc E, Henrissat B (2003) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565

    Article  CAS  PubMed  Google Scholar 

  • Darvill AG, Smith CJ, Hall MA (1978) Cell wall structure and elongation growth in Zea mays coleoptile tissue. New Phytol 80:503–516

    Article  CAS  Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153:396–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fares MA, Keane OM, Toft C, Carretero-Paulet L, Jones GW (2013) The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes. PLoS Genet 9:e1003176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferré H, Broberg A, Duus JØ, Thomsen KK (2000) A novel type of arabinoxylan arabinofuranohydrolase isolated from germinated barley. Analysis of substrate preference and specificity by nano-probe NMR. Eur J Biochem 267:6633–6641

    Article  PubMed  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Longman, London

    Google Scholar 

  • Fry SC (2004) Tansley Review: primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  • Gibeaut DM, Carpita NC (1991) Tracing cell wall biogenesis in intact cells and plants: selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol 97:551–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005) Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221:729–738

    Article  CAS  PubMed  Google Scholar 

  • Gilead S, Shoham Y (1995) Purification and characterization of α-l-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61:170–174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, Schomburg D (2003) Crystal structure and snapshots along the reaction pathway of a family 51 α-l-arabinofuranosidase. EMBO J 22:4922–4932

    Article  PubMed Central  PubMed  Google Scholar 

  • Ivanov VB (1974) Cellular basis of plant growth. Nauka, Moscow

    Google Scholar 

  • Kabel MA, Borne H, Vincken JP, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69:94–105

    Article  CAS  Google Scholar 

  • Kozlova LV, Mikshina PV, Gorshkova TA (2012a) Glucuronoarabinoxylan extracted by treatment with endoxylanase from different zones of growing maize root. Biochemistry (Moscow) 77:395–403

    Article  CAS  Google Scholar 

  • Kozlova LV, Snegireva AV, Gorshkova TA (2012b) Distribution and structure of mixed linkage glucan at different stages of elongation of maize root cells. Russ J Plant Physiol 59:339–347

    Article  CAS  Google Scholar 

  • Kozlova LV, Ageeva MV, Ibragimova NN, Gorshkova TA (2014) Arrangement of mixed-linkage glucan and glucuronoarabinoxylan in the cell walls of growing maize roots. Ann Bot 114:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) Mega: molecular Evolutionary Genetics Analysis, version 1.0. Pennsylvania State University, University Park, PA 16802

  • Laidlaw HKC, Lahnstein J, Burton RA, Fincher GB, Jobling SA (2012) Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development. J Exp Bot 63:3031–3045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee RC, Burton RA, Hrmova M, Lahnstein J, Fincher GB (2001) Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochem J 356:181–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity: characterization, primary structures, and COOH-terminal processing. J Biol Chem 278:5377–5387

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho P, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi:10.1093/nar/gkt1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma W, Muthreich N, Liao C, Franz-Wachtel M, Schütz W, Zhang F, Hochholdinger F, Li C (2010) The mucilage proteome of maize (Zea mays L.) primary roots. J Proteome Res 9:2968–2976. doi:10.1021/pr901168v

    Article  CAS  PubMed  Google Scholar 

  • Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A (2012) Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol 169:807–815  

    Article  CAS  PubMed  Google Scholar 

  • Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S (2004) Crystal structure of a family 54 α-l-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem 279:44907–44914

    Article  CAS  PubMed  Google Scholar 

  • Numan MT, Bhosle NB (2006) α-l-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260

    Article  CAS  PubMed  Google Scholar 

  • Obel N, Porchia AC, Scheller HV (2002) Dynamic changes in cell wall polysaccharides during wheat seedling development. Phytochemistry 60:603–610

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2000) α-l-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  PubMed  Google Scholar 

  • Shallom D, Belakhov V, Solomon D, Shoham G, Baasov T, Shoham Y (2002) Detailed kinetic analysis and identification of the nucleophile in α-l-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. J Biol Chem 277:43667–43673

    Article  CAS  PubMed  Google Scholar 

  • Shirokova NP, Ivanov VB (1997) Hypocotyl growth in etiolated cucumber seedlings: 2. Cellular analysis of growth. Russ J Plant Physiol 44:679–685

    CAS  Google Scholar 

  • Silk WK (1984) Quantitative descriptions of development. Annu Rev Plant Physiol 35:479–518

    Article  Google Scholar 

  • Simpson CG, Manthri S, Raczynska KD, Kalyna M, Lewandowska D, Kusenda B, Maronova M, Szweykowska-Kulinska Z, Jarmolowski A, Barta A, Brown JW (2010) Regulation of plant gene expression by alternative splicing. Biochem Soc Trans 38:667–671

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Kitamura S, Kato Y, Itoh T (2000) Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea mays L. Plant Cell Physiol 41:948–959

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Kitamura S, Sone Y, Itoh T (2002) Immunohistochemical localization of hemicelluloses and pectins varies during tissue development in the bamboo culm. Histochem J 34:535–544

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Steacher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evolution 28:2731–2739

    Article  CAS  Google Scholar 

  • Taylor EJ, Smith NL, Turkenburg JP, D’Souza S, Gilbert HJ, Davies GJ (2006) Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem J 395:31–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The Rice Chromosomes 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20. doi:10.1186/1741-7007-3-20

    Article  PubMed Central  Google Scholar 

  • Tyler L, Bragg JN, Wu J, Yang X, Tuskan G, Vogel JP (2010) Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. BMC Genom 11:600. doi:10.1186/1471-2164-11-600

    Article  Google Scholar 

  • Vicré M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138:998–1008

    Article  PubMed Central  PubMed  Google Scholar 

  • Ying R, Rondeau-Mouro C, Barron C, Mabille F, Perronnet A, Saulnier L (2013) Hydration and mechanical properties of arabinoxylans and β-d-glucans films. Carbohydr Polym 96:31–38. doi:10.1016/j.carbpol.2013.03.090

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen S, Alvarez S, Asirvatham VS, Schachtman DP, Wu Y, Sharp RE (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J, Alvarez S, Marsh EL, LeNoble ME, Cho I-J, Sivaguru M, Chen S, Nguyen HT, Wu Y, Schachtman DP, Sharp RE (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145:1533–1548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zverlov VV, Liebl W, Bachleitner M, Schwarz WH (1998) Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of α-l-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. FEMS Microbiol Lett 164:337–343

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Russian Foundation for Basic Research (project # 14-04-01002) and by grant for support of Leading Scientific Schools of Russian Federation [NSh-1890.2014.4].

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila V. Kozlova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, L.V., Gorshkov, O.V., Mokshina, N.E. et al. Differential expression of α-l-arabinofuranosidases during maize (Zea mays L.) root elongation. Planta 241, 1159–1172 (2015). https://doi.org/10.1007/s00425-015-2244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2244-1

Keywords

Navigation