Skip to main content
Log in

NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phytophthora infestans INF1 elicitin causes the hypersensitive response (HR) in Nicotiana benthamiana (Kamoun et al. in Plant Cell 10:1413–1425, 1998). To identify N. benthamiana proteins that interact with INF1, we carried out a yeast two-hybrid screen. This screen resulted in the isolation of a gene NbLRK1 coding for a novel lectin-like receptor kinase. NbLRK1 interacted with INF1 through its VIb kinase subdomain. Purified INF1 and NbLRK1 proteins also interacted in vitro. INF1 treatment of N. benthamiana leaves induced autophosphorylation of NbLRK1. Most importantly, virus-induced gene silencing (VIGS) of NbLRK1 delayed INF1-mediated HR in N. benthamiana. These data suggest that NbLRK1 is a component of the N. benthamiana protein complex that recognizes INF1 elicitor and transduces the HR signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HR:

Hypersensitive response

LRK:

Lectin-like receptor kinase

MBP:

Myelin basic protein

VIGS:

Virus-induced gene silencing

Y2H:

Yeast two-hybrid assay

References

  • Adams JA (2003) Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? Biochemistry 42:601–607

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Barre A, Herve C, Lescure B, Rouge P (2002) Lectin receptor kinases in plants. Crit Rev Plant Sci 21:379–399

    Article  CAS  Google Scholar 

  • Baulcombe DC, Chapman S, Santa CS (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 8:1045–1053

    Article  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Sano H, Kusano T (1999) Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet 262:534–542

    Article  PubMed  CAS  Google Scholar 

  • Bonnet P, Bourdon E, Ponchet M, Blein JP, Ricci P (1996) Acquired resistance triggered by elicitins in tobacco and other plants. Eur J Plant Pathol 102:181–192

    Article  CAS  Google Scholar 

  • Brummer M, Arend M, Fromm J, Schlenzig A, Osswald WF (2002) Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quecrina. Physiol Mol Plant Pathol 61:109–120

    Article  CAS  Google Scholar 

  • Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Elllis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18:243–256

    Article  PubMed  CAS  Google Scholar 

  • Cock JM, Vanoosthuyse V, Gaude T (2002) Receptor kinase signaling in plants and animals: distinct molecular systems with mechanistic similarities. Curr Opin Cell Biol 14:230–236

    Article  PubMed  CAS  Google Scholar 

  • Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sagi L, Swennen R, Terauchi R (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLOS Pathogens 2:14–28

    Article  CAS  Google Scholar 

  • Dayhoff MO (1978) Survey of new data and computer methods of analysis. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Georgetown University, Washington, DC

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Catanzariti AM, Dodds P (2006) The problem of how fungal and oomycete avirulence proteins enter plant cells. Trends Plant Sci 11:61–63

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  • Florentino LH, Santos AA, Fontenelle MA, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EPB (2006) A PERK-like receptor kinase interacts with the genimivirus nuclear shuttle protein and potentiates viral infection. J Virol 80:6648–6656

    Article  PubMed  CAS  Google Scholar 

  • Fontes EPB, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The genimivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18:2545–2556

    Article  PubMed  CAS  Google Scholar 

  • Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rouge P, Pont-Lezica R, Canut H (2006) Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane–cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–61

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    PubMed  CAS  Google Scholar 

  • He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY (2004) A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor Appl Genet 109:377–383

    Article  PubMed  CAS  Google Scholar 

  • Hervé C, Serres J, Dabos P, Canut H, Barre A, Rougé P, Lescure B (1996) Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39:671–682

    Article  Google Scholar 

  • Kaku H, Nishizawa Y, Ihii-Minami N, Akimoto-Tomiyama C, Dohmae N, Tako K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–91

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S, Young M, Glascok C, Tyler BM (1993) Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to fungal and bacterial phytopathogens. Mol Plant Microbe Interact 10:13–20

    Article  Google Scholar 

  • Kamoun S, van West P, de Jong AJ, de Groot KE, Vleeshouwers VGAA, Govers F (1997) A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Mol Plant Microbe Interact 10:13–20

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S, van West P, Vleeshouwers GAA, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S, Honee G, Weide R, Lauge R, Kooman-Gersmann M, de Groot K, Govers F, de Wit PJGM (1999a) The fungal gene Avr9 and the oomycete gene inf1 confer avirulence to potato virus X on tobacco. Mol Plant Microbe Interact 12:459–462

    Article  CAS  Google Scholar 

  • Kamoun S, Huitema E, Vleeshouwers VGAA (1999b) Resistance to oomycetes: a general role for hypersensitive response? Trends Plant Sci 4:196–200

    Article  PubMed  Google Scholar 

  • Kamoun S (2001) Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr Opin Plant Biol 4:295–300

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4:383–391

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Martin GB (1999) Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Herve C, Boutet E, Bono JJ, Imberty A, Cullimore JV (2003) Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 133:1893–1910

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi M, Yoshida K, Sumizono T, Tazaki K (2002) A receptor-like protein kinase with a lectin-like domain from lombardy poplar: gene expressions in response to wounding and characterization of phosphorylation activity. Mol Genet Genomics 267:506–514

    Article  PubMed  CAS  Google Scholar 

  • Ouaked F, Rozhon W, Lecoureux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288

    Article  PubMed  CAS  Google Scholar 

  • Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Shauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99:1085–1089

    Article  Google Scholar 

  • Pernollet JC, Sallantin M, Salle-Tourne M, Huet JC (1993) Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical properties and toxicity to tobacco and other plant species. Physiol Mol Plant Pathol 42:53–67

    Article  CAS  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco Rattle Virus for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Saitoh H, Kiba A, Nishihara M, Yamamura S, Suzuki K, Terauchi R (2001) Production of antimicrobial defensin in Nicotiana benthamiana with a potato virus X vector. Mol Plant Microbe Interact 14:111–115

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167

    Article  PubMed  CAS  Google Scholar 

  • van Damme EJM, Peumans WJ, Barre A, Rouge P (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692

    Article  Google Scholar 

  • Wendehenne D, Binet MN, Blein JP, Ricci P, Pugin A (1995) Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett 374:203–207

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91 phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge David Baulcombe, Sainsbury Laboratory, John Innes Center, for pPC2S and PTV:00 and Nam Hai Chua, Rockefeller University, for pTA7001. This work was carried out in part by support from “Program for Promotion of Basic Research Activities for Innovative Biosciences” (Japan), “Iwate University twenty-first Century COE Program: Establishment of Thermo-Biosystem Research Program” and Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation PMI-0010) to RT. We thank Matt Shenton, IBRC, for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Terauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzaki, H., Saitoh, H., Takahashi, Y. et al. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228, 977–987 (2008). https://doi.org/10.1007/s00425-008-0797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0797-y

Keywords

Navigation