Skip to main content
Log in

Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper–zinc superoxide dismutase in roots of Elsholtzia haichowensis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effects of excess copper (Cu) on the accumulation of hydrogen peroxide (H2O2) and antioxidant enzyme activities in roots of the Cu accumulator Elsholtzia haichowensis Sun were investigated. Copper at 100 and 300 μM significantly increased the concentrations of malondialdehyde and H2O2, and the activities of catalase (E.C. 1.11.1.6), ascorbate peroxidase (E.C. 1.11.1.11), guaiacol peroxidase (GPOD, E.C. 1.11.1.7) and superoxide dismutase (SOD, E.C. 1.15.1.1). Isoenzyme pattern and inhibitor studies showed that, among SOD isoforms, only copper–zinc superoxide dismutase (CuZn–SOD) increased. Excess Cu greatly increased the accumulation of superoxide anion (O2 ·−) and H2O2 in E. haichowensis roots. This study also provides the first cytochemical evidence of an accumulation of H2O2 in the root cell walls as a consequence of Cu treatments. Experiments with diphenyleneiodonium as an inhibitor of NADPH oxidase, 1,2-dihydroxybenzene-3,5-disulphonic acid as an O2 ·− scavenger, and N-N-diethyldithiocarbamate as an inhibitor of SOD showed that the source of H2O2 in the cell walls could partially be NADPH oxidase. The enzyme can use cytosolic NADPH to produce O2 ·−, which rapidly dismutates to H2O2 by SOD. Apoplastic GPOD and CuZn–SOD activities were induced in roots of E. haichowensis with 100 μM Cu suggesting that these two antioxidant enzymes may be responsible for H2O2 accumulation in the root apoplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX :

Ascorbate peroxidase

CAT:

Catalase

CuZn–SOD:

Copper–zinc superoxide dismutase

DAB:

3,3-Diaminobenzidine

DDC:

N-N-diethyldithiocarbamate

DPI:

Diphenyleneiodonium

GPOD:

Guaiacol peroxidase

H2DCFDA :

2′,7′-Dichlorodihydrofluorescein diacetate

MDA :

Malondialdehyde

NBT:

Nitroblue tetrazolium

Tiron:

1,2-Dihydroxybenzene-3,5-disulphonic acid

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Aktas H, Karni L, Chang DC, Turhan E, Bar-Tal A, Aloni B (2005) The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant 123:67–74

    Article  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  PubMed  CAS  Google Scholar 

  • Barón-Ayala M, Lopez-Gorge J, Lachica M, Sandmann G (1992) Changes in carotenoids and fatty acids in photosystem II of Cu-deficient pea plants. Physiol Plant 84:1–5

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MH, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209–221

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Blee KA, Butt VS, Davis DR, Gardner SL, Gerrish C, Minibayeva F, Rowntree EG, Wojtaszek P (1999) Recent advances in understanding the origin of the apoplastic oxidative burst in plant cells. Free Radical Res 31:137–145

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310

    CAS  Google Scholar 

  • Chongpraditnum P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244

    Google Scholar 

  • Christensen JH, Bauw G, Welinder KG, van Montagu M, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118:125–135

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Capelli N, Van Breusegem F (2007) The interplay between salicylic acid and reactive oxygen species during cell death in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Heidelberg, pp 247–276

    Chapter  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals 17:379–387

    Article  PubMed  Google Scholar 

  • Elstner EF, Wagner GA, Schutz W (1988) Activated oxygen in green plants in relation to stress situations. Curr Top Plant Biochem Physiol 7:159–187

    Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    PubMed  CAS  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113:507–514

    Article  CAS  Google Scholar 

  • Gupta M, Cuypers A, Vangronsveld J, Clijsters H (1999) Copper affects the enzymes of the ascorbate–glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Plant 106:262–267

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G., Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Jouili H, Ferjani EE (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. CR Biol 326:639–644

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soil and plants. CRC Press, Boca Raton

    Google Scholar 

  • Landberg L, Greger M (2002) Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J Plant Physiol 159:69–75

    Article  CAS  Google Scholar 

  • Lombardil L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802

    Article  CAS  Google Scholar 

  • Lou LQ, Shen ZG, Li XD (2004) The copper tolerance mechanisms of Elsholtizia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120

    Article  CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves, Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–441

    Article  PubMed  CAS  Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri CLM (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiol Plant 104:630–638

    Article  CAS  Google Scholar 

  • Nielsen HD, Brownlee C, Coelho SM, Brown M (2003) Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol 160:157–165

    Article  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan C (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  PubMed  Google Scholar 

  • Pellinen R, Palva T, Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20:349–356

    Article  PubMed  CAS  Google Scholar 

  • Qian M, Li XD, Shen ZG (2005) Adaptive copper tolerance in Elsholtiza Haichowensis involves production of Cu-induced thiol peptides. Plant Growth Regulat 47:65–73

    Article  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  PubMed  CAS  Google Scholar 

  • Ratkevicius N, Correa JA, Moenne A (2003) Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell Environ 26:1599–1608

    Article  CAS  Google Scholar 

  • Rodriguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Delrio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 ·− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sgherri C, Milone MTA, Clijsters H, Navari-Izzo F (2001) Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. J Plant Physiol 158:1439–1447

    Article  CAS  Google Scholar 

  • Sgherri C, Quartacci MF, Navari-Izzo F (2007) Early production of activated oxygen species in root apoplast of wheat following copper excess. J Plant Physiol (in press)

  • Shen ZG, Zhang FQ, Zhang FS (1998) Toxicity of copper and zinc in seedlings of mung bean and inducing accumulation of polyamine. J Plant Nutr 21:1153–1162

    Article  CAS  Google Scholar 

  • Shi JY, Chen YX, Huang YY He W (2004) SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron 35:557–564

    Article  PubMed  CAS  Google Scholar 

  • Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307–315

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Physiol 13:195–206

    Google Scholar 

  • Vanacker E, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512

    Article  CAS  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, van Camp W (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Zheng X, Van Huystee RB (1992) Peroxidase-regulated elongation of segments from peanuts hypocotyls. Plant Sci 81:47–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Electron Microscopy Unit of the Centre of Biological Instrumentation of Nanjing Agricultural University for providing laboratory facilities and Dr Jianhua Hao for her technical assistance in the microscopy analysis. This research project was supported by the National Natural Science Foundation of China (No. 30471036), the 111 project (No B07030), and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Xia, Y., Wang, G. et al. Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper–zinc superoxide dismutase in roots of Elsholtzia haichowensis . Planta 227, 465–475 (2008). https://doi.org/10.1007/s00425-007-0632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0632-x

Keywords

Navigation