Skip to main content
Log in

EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In order to better understand the developmental processes that govern the formation of somatic embryos in oil palm (Elaeis guineensis Jacq.), we investigated the transcription factor genes expressed during embryogenesis in this species. The AP2/EREBP transcription factor family includes the AP2 subgroup, which contains several proteins that play important roles in plant development. We identified and characterized EgAP2-1, which codes for a protein that contains two AP2 domains similar to those of the transcription factor BABYBOOM (BBM) and more generally AINTEGUMENTA-like (AIL) proteins of the AP2 subgroup. In a similar way to related genes from eudicots, ectopic expression of EgAP2-1 in transgenic Arabidopsis plants alters leaf morphology and enhances regeneration capacity. In oil palm, EgAP2-1 transcripts accumulate to the greatest extent in zygotic embryos. This expression pattern was investigated in more detail by in-situ hybridization, revealing that in both zygotic and somatic embryos, EgAP2-1 expression is concentrated in proliferating tissues associated with the early development of leaf primordia, root initials and provascular tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIL:

AINTEGUMENTA-like

AP2/EREBP:

APETALA2/Ethylene-responsive element binding protein

BM:

Basal medium

CIM:

Callus-inducing medium

DAP:

Days after pollination

EC:

Embryogenic callus

NEC:

Non-embryogenic callus

SIM:

Shoot-inducing medium

SC:

Embryogenic suspension cells

SE:

Somatic embryos

References

  • Aberlenc-Bertossi F, Noirot M, Duval Y (1999) BA enhances the germination of oil palm somatic embryos derived from embryogenic suspension cultures. Plant Cell Tissue Organ 56:53–57

    Article  CAS  Google Scholar 

  • Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW (2007) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 58:1245–1259

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediates patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, Van Lammeren AAM, Miki BLA, Custers JBM, Van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Daimon Y, Takabe K, Tasaka M (2003) The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol 44:113–121

    Article  PubMed  CAS  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  PubMed  CAS  Google Scholar 

  • Fambrini M, Durante C, Cionini G, Geri C, Giorgetti L, Michelotti V, Salvini M, Pugliesi C (2006) Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev Genes Evol 216:253–264

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59:853–868

    Article  PubMed  CAS  Google Scholar 

  • Gashler AL, Swaminathan S, Sukhatme VP (1993) A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 13:4556–4571

    PubMed  CAS  Google Scholar 

  • Harding WE, Weining T, Nichols KW, Fernandez, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-like 15. Plant Physiol 133:653–663

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee K.M, Lo R, Kwong L, Yamagashi K, Fischer R, Goldberg B, Harada J (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Morcillo F, Gagneur C, Adam H, Richaud F, Singh R, Cheah SC, Rival A, Duval Y, Tregear JW (2006) Somaclonal variation in micropropagated oil palm. Charaterization of two novel genes with enhanced expression in epigenetically abnormal cell lines and in response to auxin. Tree Physiol 26:585–594

    PubMed  CAS  Google Scholar 

  • Mizukami Y, Fisher RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  PubMed  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  • Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128

    Article  PubMed  CAS  Google Scholar 

  • Pannetier C, Arthuis P, Lievoux D (1981) Néoformation de jeunes plantes d’Elaeis guineensis à partir de cals primaires obtenus sur fragments foliaires cultivés in vitro. Oléagineux 36:119–122

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Rival A, Bertrand L, Beule T, Combes MC, Trouslot P, Lashermes P (1998) Suitability of RAPD analysis for the detection of somaclonal variants in oil palm. Plant Breeding 117:73–76

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot 62:43–52

    Google Scholar 

  • Seipel K, Georgiev O, Schaffmer W (1992) Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J 11:4961–4968

    PubMed  CAS  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JBM, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351

    Article  PubMed  CAS  Google Scholar 

  • Stone S, Kwong L, Yee K.M, Pelletier J, Lepiniec L, Fischer R, Goldberg B, Harada J (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  • de Touchet B, Duval Y, Pannetier C (1991) Plant regeneration from embryogenic suspension culture of oil palm (Elaeis guineensis Jacq.). Plant Cell Rep 10:529–532

    Article  Google Scholar 

  • Van der graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2002) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 22:4971–4980

    Google Scholar 

  • Vergunst AC, de Waal EC, Hooykaas PJJ (1998) Root transformation by Agrobacterium tumefaciens. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 227–244

    Google Scholar 

  • Vogel G (2005) How does a single somatic cell become a whole plant? Science 309:86

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Wong L, Meng L, LemauxPG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

  • Zuo J, Niu Q, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative to embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Frédérique Richaud for help in cDNA library screening. The authors acknowledge the generous support of colleagues at INRAB Pobé Experimental Station in Benin, FELDA Agriculture Services in Malaysia and ASD Coto in Costa Rica for providing plant material. We are grateful to Timothy Tranbarger for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Morcillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (DOC 1.01 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morcillo, F., Gallard, A., Pillot, M. et al. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226, 1353–1362 (2007). https://doi.org/10.1007/s00425-007-0574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0574-3

Keywords

Navigation