Skip to main content
Log in

Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sorgoleone is the major component of the hydrophobic root exudate of sorghum [Sorghum bicolor (L.) Moench]. The presence of this allelochemical is intrinsically linked to root growth and the development of mature root hairs. However, factors modulating root formation and the biosynthesis of sorgoleone are not well known. Sorgoleone production was independent of early stages of plant development. The optimum temperature for root growth and sorgoleone production was 30°C. Seedling development and sorgoleone levels were greatly reduced at temperatures below 25°C and above 35°C. The level of sorgoleone was also sensitive to light, being reduced by nearly 50% upon exposure to blue light (470 nm) and by 23% with red light (670 nm). Applying mechanical pressure over developing seedlings stimulated root formation but did not affect the biosynthesis of this lipid benzoquinone. Sorgoleone production did not change in seedlings exposed to plant defense elicitors. On the other hand, sorgoleone levels increased in plants treated with a crude extract of velvetleaf (Abutilon theophrasti Medik.) root. This stimulation was not associated with increased osmotic stress, since decreases in water potential (Ψw) by increasing solute concentrations with sorbitol reduces sorgoleone production. Sorgoleone production appears to be constitutively expressed in young developing sorghum plants. Other than with temperature, changes in the environmental factors had either no effect or caused a reduction in sorgoleone levels. However, the stimulation observed with velvetleaf root crude extract suggests that sorghum seedlings may respond to the presence of other plants by releasing more of this allelochemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alsaadawi IS, Al-Uqaili JK, Alrubeaa AJ, Al-Hadithy SM (1986) Allelopathic suppression of weed and nitrification by selected cultivars of Sorghum bicolor (L.) Moench. J Chem Ecol 12:209–219

    Article  Google Scholar 

  • Biesgen C, Weiler EW (1999) Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta 208:155–165

    Article  PubMed  CAS  Google Scholar 

  • Breazeale JF (1924) The injurious after-effects of sorghum. J Am Soc Agron 16:689–700

    CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-Box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15: 813–825

    Article  CAS  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003a) Evaluation of seven Sorghum (Sorghum sp.) accessions. J Chem Ecol 29:2073–2083

    Article  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003b) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Internat J Plant Sci 164:861–866

    Article  Google Scholar 

  • Dayan FE, Kagan IA, Rimando AM (2003) Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. J Biol Chem 278:28607–28611

    Article  PubMed  CAS  Google Scholar 

  • De Almeida Barbosa LC, Ferreira ML, Demuner AJ, Da Silva AA, De Cassia Pereira R (2001) Preparation and phytotoxicity of sorgoleone analogues. Quim Nova 24:751–755

    Google Scholar 

  • De Souza CN, De Souza IF, Pasqual M (1999) Extração e ação de sorgoleone sobre o crescimento de plantas. Ciênc Agrotecnol 23: 331–338

    Google Scholar 

  • Doggett H (1988) Sorghum. Longman Scientific & Technical; Copublished in the United States with Wiley, New York. p 516

  • Dolan L (2001) The role of ethylene in root hair growth in Arabidopsis. J Plant Nutr Soil Sci 164:141–145

    Article  CAS  Google Scholar 

  • Einhellig FA (1986) Mechanisms and modes of action of allelochemicals. In: Putnam AR, Tang C-S (eds) The Science of Allelopathy. Wiley, New York, pp 171–188

    Google Scholar 

  • Einhellig FA, Rasmussen JA (1989) Prior cropping with grain sorghum inhibits weeds. J Chem Ecol 15:951–960

    Article  Google Scholar 

  • Einhellig FA, Souza IF (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J Chem Ecol 18:1–11

    Article  CAS  Google Scholar 

  • Einhellig FA, Rasmussen JA, Hejl AM, Souza IF (1993) Effects of root exudate sorgoleone on photosynthesis. J Chem Ecol 19:369–375

    Article  CAS  Google Scholar 

  • Epple P, Vignutelli A, Apel K, Bohlmann H (1998) Differential induction of the Arabidopsis thaliana Thi2.1 gene by Fusarium oxysporum f. sp. matthiolae. Mol Plant Microbe Interact 11:523–529

    Article  PubMed  CAS  Google Scholar 

  • Fate GD, Lynn DG (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc 118:11369–11376

    Article  CAS  Google Scholar 

  • Forney DR, Foy CL, Wolf DD (1985) Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping with summer-annual forage grasses. Weed Sci 33:490–497

    Google Scholar 

  • Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421

    Article  CAS  Google Scholar 

  • Guenzi WD, McCalla TM, Nordstadt FA (1967) Presence and persistence of phytotoxic substances in wheat, oat, corn and sorghum residues. Agron J 59:163–165

    Article  CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34:387–412

    Article  PubMed  CAS  Google Scholar 

  • Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J Chem Ecol 30:2181–2191

    Article  PubMed  CAS  Google Scholar 

  • Hess DE, Ejeta G, Buttler LG (1992) Selection of sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497

    Article  CAS  Google Scholar 

  • Inbar M, Doodstar H, Sonoda RM, Leibee GL, Mayer RT (1998) Elicitors of plant defensive systems reduce insect densities and disease incidence. J Chem Ecol 24:135–149

    Article  CAS  Google Scholar 

  • Kagan IA, Rimando AM, Dayan FE (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J Agric Food Chem 51:7589–7595

    Article  PubMed  CAS  Google Scholar 

  • Kong C, Xu X, Zhou B, Hu F, Zhang C, Zhang M (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Lehle FR, Putnam AR (1983) Allelopathic potential of sorghum (Sorghum bicolor): isolation of seed germination inhibitors. J Chem Ecol 9:1223–1234

    Article  CAS  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Nanayakkara NPD, Khan IA, Abourashed EA, Romagni JG, Duke SO, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59:281–288

    Article  Google Scholar 

  • Netzly DH, Butler LG (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci 26:775–778

    Article  CAS  Google Scholar 

  • Nimbal CI, Pedersen JF, Yerkes CN, Weston LA, Weller SC (1996a) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    Article  CAS  Google Scholar 

  • Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996b) Herbicidal activity and site of action of the natural product sorgoleone. Pestic Biochem Physiol 54:1–11

    Article  Google Scholar 

  • Panasiuk O, Bills DD, Leather GR (1986) Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. J Chem Ecol 12:1533–1543

    Article  Google Scholar 

  • Putnam AR, Defrank J, Barnes JP (1983) Exploitation of allelopathy for weed control in annual and perennial cropping systems. J Chem Ecol 8:1001–1010

    Article  Google Scholar 

  • Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA (1992) Sorgoleone from root exudates inhibits mitochondrial functions. J Chem Ecol 18:197–207

    Article  CAS  Google Scholar 

  • Rimando AM, Dayan FE, Czarnota MA, Weston LA, Duke SO (1998) A new photosystem II electron transfer inhibitor from Sorghum bicolor. J Nat Prod 61:972–930

    Google Scholar 

  • Rimando AM, Dayan FE, Streibig JC (2003) PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor. J Nat Prod 66:42–45

    Article  PubMed  CAS  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, 198 Madison Avenue, New York, 10016, 336 pp

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd edn.Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Subudhi PK, Nguyen HT (2000) New horizons in biotechnology. In: Frederiksen RA (ed) Sorghum: origin, history, technology, and production. Wiley, New York, pp 349–397

    Google Scholar 

  • Suzuki Y, Kono Y, Inoue T, Sakurai A (1998) A potent antifungal benzoquinone in etiolated sorghum seedlings and its metabolites. Phytochemistry 47:997–1001

    Article  CAS  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860–866

    Article  Google Scholar 

  • Yang X, Owens TG, Scheffler BE, Weston LA (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol 30:199–213

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Ramonell K, Somerville S, Stacey G (2002) Characterization of early, chitin-induced gene expression in Arabidopsis. Mol Plant Microbe Interact 15:963–970

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am thankful for the excellent technical assistance provided by J. Howell and S. B. Watson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck E. Dayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayan, F.E. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor . Planta 224, 339–346 (2006). https://doi.org/10.1007/s00425-005-0217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0217-5

Keywords

Navigation