Skip to main content
Log in

The pollen-specific DEFH125 promoter from Antirrhinum is bound in vivo by the MADS-box proteins DEFICIENS and GLOBOSA

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The Antirrhinum DEFH125 MADS-box protein is expressed in maturing pollen and thus likely participates in the regulation of pollen development. Here, we describe the characterization of a 2.5 kbp promoter fragment conferring pollen-specific GUS expression in Antirrhinum, as well as in the distantly related species Arabidopsis. Taking advantage of the higher sensitivity of the diphtheria toxin A-chain (DTA) reporter gene assay, onset of DEFH125 promoter activity could be defined to start at the late unicellular microspore stage. Stamen development in Antirrhinum is governed by the class B MADS-box genes DEFICIENS (DEF) and GLOBOSA (GLO). The respective proteins form a heterodimer and are expressed throughout stamens, except for microspores. Complementary expression patterns of DEFH125 and DEF/GLO during later stamen development tempted us to investigate whether the DEF/GLO heterodimer might bind the DEFH125 promoter and could thus be involved in repressing the DEFH125 expression. The ChIP technique was applied to investigate protein/DNA interactions occurring in vivo. We report the identification of a 200 bp DEFH125 promoter fragment that is in vivo bound by DEF and GLO proteins. This fragment contains a CArG-box motif, known to mediate DNA binding of MADS-box proteins. Implications for a likely function of DEF and GLO in the transcriptional control of DEFH125 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

DEF :

DEFICIENS

DEFH125 :

DEFICIENS HOMOLOG 125

DTA:

Diphtheria toxin A-chain

GLO :

GLOBOSA

GUS:

β-Glucuronidase

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2002) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Bey M, Stüber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H, Zachgo S (2004) Characterization of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16:3197–3215

    Article  PubMed  Google Scholar 

  • Chen Y-CS, McCormick S (1996) Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122:3243–3253

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Galgoci BF, Irish VF (1995) Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development. Development 121:2887–2895

    PubMed  CAS  Google Scholar 

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438

    Article  PubMed  CAS  Google Scholar 

  • Heidmann I, Efremova N, Saedler H, Schwarz-Sommer Z (1998) A protocol for transformation and regeneration of Antirrhinum majus. Plant J 13:723–728

    Article  Google Scholar 

  • Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711–1721

    PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76:703–716

    Article  PubMed  CAS  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16(Suppl):S142–S153

    Article  PubMed  CAS  Google Scholar 

  • Miller R (1986) Beyond ANOVA, basics of applied statistics. Wiley, New York

    Google Scholar 

  • Müller BM (2003) Doktorarbeit (PhD thesis), University of Cologne

  • Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:11664–11669

    Article  PubMed  CAS  Google Scholar 

  • Schreiber DN, Bantin J, Dresselhaus T (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol 134:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Schwartz YB, Kahn TG, Pirrotta V (2005) Characteristic low density and shear sensitivity of cross-linked chromatin containing polycomb complexes. Mol Cell Biol 25:432–439

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–939

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Hue I, Huijser P, Flor P, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11:251–263

    PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    Article  PubMed  CAS  Google Scholar 

  • Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z (1990) DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    PubMed  CAS  Google Scholar 

  • Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  PubMed  CAS  Google Scholar 

  • Theißen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  PubMed  Google Scholar 

  • Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647–1657

    PubMed  CAS  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    PubMed  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell 16:2573–2585

    Article  PubMed  CAS  Google Scholar 

  • Twell D (1995) Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187:144–154

    Article  CAS  Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    Article  PubMed  CAS  Google Scholar 

  • Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Nishimura M, Hara-Nishimura I, Noguchi T (2003) Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant Cell Physiol 44:1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Zachgo S, de Andrade Silva E, Motte P, Tröbner W, Saedler H, Schwarz-Sommer Z (1995) Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121:2861–2875

    PubMed  CAS  Google Scholar 

  • Zachgo S, Saedler H, Schwarz-Sommer Z (1997) Pollen-specific expression of DEFH125, a MADS-box transcription factor in Antirrhinum with unusual features. Plant J 11:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Zachgo S, Perbal MC, Saedler H, Schwarz-Sommer Z (2000) In situ analysis of RNA and protein expression in whole mounts facilitates detection of floral gene expression dynamics. Plant J 23:697–702

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hans Sommer, MPIZ, for support with the molecular work. A.L. received a scholarship from the DFG (Graduierten Kolleg, ‘Molecular analysis of developmental processes’). This work was supported by a grant from the DFG to S.Z. (ZA 259/3–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Zachgo.

Additional information

Andrea Lauri and Shuping Xing contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauri, A., Xing, S., Heidmann, I. et al. The pollen-specific DEFH125 promoter from Antirrhinum is bound in vivo by the MADS-box proteins DEFICIENS and GLOBOSA. Planta 224, 61–71 (2006). https://doi.org/10.1007/s00425-005-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0193-9

Keywords

Navigation