Skip to main content
Log in

Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant calcium-dependent protein kinases (CDPKs) are involved in calcium-mediated signal transduction pathways. Their expression is finely tuned in different tissues and in response to specific signals, but the mechanism of such a regulation is still largely unknown. OsCDPK2 gene expression is modulated in vivo during rice (Oryza sativa L.) flower development and is downregulated by white light in leaves. In order to identify OsCDPK2 regulatory sequences, we amplified and cloned both the 5′ and 3′-flanking regions of the gene. Sequence analysis revealed that the leader sequence is interrupted by an intron, whose regulatory role was investigated. Different ß-gucuronidase (GUS) expression vectors, carrying combinations of the putative OsCDPK2 regulatory regions, were generated and GUS expression was analyzed both in transient assays and in transgenic rice plants. The whole 5′-flanking sequence was able to drive GUS expression in rice calli and leaves transiently transformed with the biolistic technique. Analysis of the GUS expression pattern in transgenic plants revealed strong activity in root tips, leaf veins and mesophyll cells, in flower reproductive organs and in mature pollen grains. Expression was also shown to be subject to an intron-mediated enhancement (IME) mechanism, since the deletion of the leader intron sequence from chimeric OsCDPK2::GUS plasmids almost completely abolished GUS activity. Furthermore, in transiently transformed leaves, GUS expression driven by the OsCDPK2 promoter-leader region was constitutively observed regardless of light or dark exposure. Light-regulated expression was restored by inserting the OsCDPK2 3′ untranslated region (3′UTR) downstream of the chimeric OsCDPK2::GUS transcription unit, suggesting that light down-regulation is mediated by a mechanism driven by the 3′UTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDPK:

Calcium-dependent protein kinase

CARE:

cis-Acting regulatory elements

CNS:

Conserved noncoding sequence

GFP:

Green-fluorescent protein

GUS:

ß-gucuronidase

IME:

Intron-mediated enhancement

NAA:

1-Naphtaleneacetic acid

NR:

Nitrate reductase

SPS:

Sucrose-phosphate synthase

UTR:

Untranslated region

References

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu C, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanisms and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bolle C, Herrmann RG, Oelmuller R (1996) Intron sequences are involved in the plastid- and light-dependent expression of the spinach Psa D gene. Plant J 10:919–924

    Article  PubMed  CAS  Google Scholar 

  • Breviario D, Morello L, Gianì S (1995) Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases. Plant Mol Biol 27:953–967

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-H, Willmann MR, Chen H-C, Sheen J (2002) Calcium-signalling through protein kinases The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  PubMed  CAS  Google Scholar 

  • Dickey LF, Gallo-Meagher M, Thompson WT (1992) Light regulatory sequences are located within the 5′portion of the Fed-1 message sequence. EMBO J 11:2311–2317

    PubMed  CAS  Google Scholar 

  • Doyle CD, Han I-SH (2001) The role of two TATA boxes and 3′-flanking region of soybean β-tubulin gene (tub1) in light-sensitive expression. Mol Cells 12:197–203

    PubMed  CAS  Google Scholar 

  • Douglas P, Moorhead G, Hong Y, Morrice N, MacKintosh C (1998) Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulin-domain protein kinase. Planta 206:435–442

    Article  PubMed  CAS  Google Scholar 

  • Ellard-Ivey M, Hopkins RB, White TJ, Lomax TL (1999) Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L). Plant Mol Biol 39:199–208

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA 91:8837–8841

    Article  PubMed  CAS  Google Scholar 

  • Fiume E, Christou P, Gianì S, Breviario D (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703

    Article  PubMed  CAS  Google Scholar 

  • Frattini M, Morello L, Breviario D (1999) Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. Plant Mol Biol 41:753–764

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Kim SH, Park WD (1995) A potato sus3 sucrose synthase gene contains a context-dependent 3′element and a leader intron with both positive and negative tissue-specific effects Plant. Cell 7:1395–1403

    CAS  Google Scholar 

  • Hardison RC (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16:369–372

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs—a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Webster CI, Gray JC (1997) Light-regulated expression of the pea plastocyanin gene is mediated by elements within the transcribed region of the gene. Plant J 12:499–506

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM (2000) Calcium-dependent protein kinases and their relatives. Adv Bot Res 32:185–223

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper LF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Inada DC, Bashir A, Chunghau L, Thomas B, Ko C, Goff SA, Freeling M (2003) Conserved noncoding sequences in the grasses. Genome Res 13:2030–2041

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Kim C, An G (2000) Tissue-preferential expression of a rice alpha-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Kaplinsky NJ, Braun DM, Penterman J, Goff SA, Freeling M (2002) Utility and distribution of conserved noncoding sequences in the grasses. Proc Natl Acad Sci USA 99:6147–6151

    Article  PubMed  CAS  Google Scholar 

  • Kloti A, He X, Potrykus I, Hohn T, Fütterer J (2002) Tissue-specific silencing of transgene in rice. Proc Natl Acad Sci USA 99:10881–10886

    Article  PubMed  CAS  Google Scholar 

  • Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32:393–405

    Article  PubMed  CAS  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220

    Article  PubMed  CAS  Google Scholar 

  • Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008–1021

    Article  PubMed  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  PubMed  CAS  Google Scholar 

  • Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435

    Article  PubMed  CAS  Google Scholar 

  • Martin ML, Busconi L (2001) A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol 125:1442–1449

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    PubMed  CAS  Google Scholar 

  • McMichael RW Jr, Bachman M, Huber HC (1995) Spinach leaf sucrose-phosphate synthase and nitrate reductase are phosphorylated/inactivated by multiple protein kinase in vitro. Plant Physiol 108:1077–1082

    PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D (2002) A long leader intron of the Ostub16 rice β-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J 29:33–44

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Frattini M, Gianì S, Christou P, Breviario D (2000) Overexpression of the calcium-dependent protein kinase OsCDPK2 in transgenic rice is repressed by light in leaves and disrupts seed development. Transgenic Res 9:453–462

    Article  PubMed  CAS  Google Scholar 

  • Ngai N, Tsai F-Y, Coruzzi G (1997) Light-induced transcriptional repression of the pea AS1 gene: identification of cis-elements and transfactors. Plant J 12:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Fiol DF, Salerno GL (2002) A CDPK type protein kinase is involved in rice SPS light modulation. Physiol Plant 115:183–189

    Article  PubMed  CAS  Google Scholar 

  • Rethmeier N, Seurinck J, Van Montagu M, Cornelissen M (1997) Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process. Plant J 12:895–899

    Article  PubMed  CAS  Google Scholar 

  • Romeis T, Piedras P, Jones JD (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defence response. Plant Cell 12:803–816

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol 122:535–542

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato Plasma membrane targeting and biochemical characterization. Plant Physiol 129:156–168

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Sheen J, Izui K (1997) cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases. Biochim Biophys Acta 1350:109–114

    PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) Blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Tjaden G, Edwards JW, Coruzzi GM (1995) Cis elements and trans-acting factors affecting regulation of a non photosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol 108:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Tonoike H, In-Seob H, Jongewaard I, Doyle M, Guiltinan M, Forsket M (1994) Hypocotyl expression and light down-regulation of the soybean tubulin gene, tubB1. Plant J 5:343–351

    Article  PubMed  CAS  Google Scholar 

  • Vain P, James VA, Worland B, Snape J (2002) Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Morello.

Additional information

GenBank accession number for OsCDPK2 cDNA: X81394; OsCDPK 5’flanking region:Y13658

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morello, L., Bardini, M., Cricrì, M. et al. Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta 223, 479–491 (2006). https://doi.org/10.1007/s00425-005-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0105-z

Keywords

Navigation