Skip to main content
Log in

Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9-cis neoxanthin (cNx), all-trans neoxanthin (Nx), and xanthophyll di-epoxides: 9-cis violaxanthin (cVx), all-trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446–456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9-cis configuration in the acyclic polyene chain and both rely on substrates in the all-trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

Ax:

antheraxanthin

Cx:

cryptoxanthin

CxDE:

cryptoxanthin-5,6,5′,6′-di-epoxide

CxE:

cryptoxanthin-5,6-epoxide

Ddx:

diadinoxanthin

Dtx:

diatoxanthin

L:

lutein

LE:

lutein-5,6-epoxide

MGDG:

monogalactosyldiacylglycerol

Nx:

all-trans neoxanthin

cNx:

9-cis neoxanthin

dNx:

de-epoxy Nx

VDE:

violaxanthin de-epoxidase

Vx:

all-trans violaxanthin

cVx:

9-cis violaxanthin (violeoxanthin)

Zx:

zeaxanthin

References

  • Arvidsson PO, Bratt CE, Carlsson M, Akerlund HE (1996) Purification and identification of the violaxanthin de-epoxidase as a 43 kDa protein. Photosynth Res 49:119–129

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B: Spectroscopy. Birkhäuser, Basel, pp 13–62

  • Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romain lettuce and expression in Escherichia coli. Proc Natl Acad Sci USA 93:6320–6325

    Article  CAS  PubMed  Google Scholar 

  • Bugos RC, Hieber AD, Yamamoto HY (1998) Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 273:15321–15324

    Article  CAS  PubMed  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 96:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Charron JBF, Breton G, Badawi M, Sarhan F (2002) Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett 517:129–132

    Article  PubMed  Google Scholar 

  • Eugster CH (1995) Chemical derivatizations: microscale tests for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A: Isolation and analysis. Birkhäuser, Basel, pp 71–80

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    CAS  PubMed  Google Scholar 

  • Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    Article  CAS  PubMed  Google Scholar 

  • Frommolt R, Goss R, Wilhelm C (2001) The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach. Planta 213:446–456

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621

    Article  CAS  Google Scholar 

  • Grotz B, Molnar P, Stransky H, Hager A (1999) Substrate specificity and functional aspects of violaxanthin de-epoxidase, an enzyme of the xanthophyll cycle. J Plant Physiol 154:437–446

    CAS  Google Scholar 

  • Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktion. Ber Dtsch Bot Ges 79:94–107

    CAS  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin-Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243

    CAS  Google Scholar 

  • Hager A (1980) The reversible light-induced conversions of xanthophylls in the chloroplast. In: Czygan FC (ed) Pigments in plants. Fischer, Stuttgart, pp 57–79

  • Hager A, Holocher K (1994) Localization of the xanthophyll cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589

    CAS  Google Scholar 

  • Havir EA, Tausta SL, Peterson RB (1997) Purification and properties of violaxanthin de-epoxidase from spinach. Plant Sci 123:57–66

    Article  CAS  Google Scholar 

  • Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta 1482:84–91

    Article  CAS  PubMed  Google Scholar 

  • Holden HM, Rypniewski WR, Law JH, Rayment I (1987) The molecular structure of insecticyanin from the tobacco hornworm Manduca sexta L. at 2.6 Å resolution. EMBO J 6:1565–1570

    CAS  PubMed  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158:383–390

    CAS  Google Scholar 

  • Kraay GW, Zapata M, Veldhuis MJW (1992) Separation of chlorophylls c 1, c 2 and c 3 of marine phytoplankton by reversed-phase-C18-high-performance liquid chromatography. J Phycol 28:708–712

    CAS  Google Scholar 

  • Kuwabara T, Hasegawa M, Kawano M, Takaichi S (1999) Characterization of violaxanthin de-epoxidase purified in the presence of Tween 20: effects of dithiothreitol and pepstatin A. Plant Cell Physiol 40:1119–1126

    CAS  PubMed  Google Scholar 

  • Latowski D, Kostecka A, Strzalka K (2000) Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes. Biochem Soc Trans 28:810–812

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier, Kostecka-Gugala A, Strzalka K (2002) Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269:4656–4665

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (2001) Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model. Planta 212:382–391

    Article  CAS  PubMed  Google Scholar 

  • Müller D (1962) Über jahres- und lunarperiodische Erscheinungen bei einigen Braunalgen. Bot Mar 4:140–155

    Google Scholar 

  • Müller H (1997) Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection. Z Lebensm Unters Forsch A 204:88–94

    Article  Google Scholar 

  • Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U, Rask L, Peterson PA (1984) The three-dimensional structure of retinol-binding protein. EMBO J 3:1451–1454

    CAS  PubMed  Google Scholar 

  • Pfündel E, Renganathan M, Gilmore AM, Yamamoto HY, Dilley RA (1994) Intrathylakoid pH in isolated pea chloroplasts as probed by violaxanthin de-epoxidation. Plant Physiol 106:1647–1658

    PubMed  Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428

    CAS  Google Scholar 

  • Rockholm DC, Yamamoto HY (1996) Purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyldiacylglyceride. Plant Physiol 110:697–703

    CAS  PubMed  Google Scholar 

  • Siefermann D (1972) Kinetic studies on the xanthophyll cycle of Lemna gibba L. Influence of photosynthetic oxygen and supplied reductant. In: Forti G, Avron M, Melandri A (eds) Proceedings of the second international congress on photosynthesis research, vol 1. Junk, The Hague, pp 629–635

  • Stransky H, Hager A (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllzyklus in verschiedenen Algenklassen. Arch Mikrobiol 73:315–323

    CAS  PubMed  Google Scholar 

  • Subbarayan C, Jungalwala FB, Cama HR (1965) Applicability of partition ratios mercuric chloride complexes and chromatographic behaviour for identification of carotenoids. Anal Biochem 12:275–279

    CAS  Google Scholar 

  • Wilhelm C, Volkmar P, Lohmann C, Becker A, Meyer M (1995) The HPLC-aided pigment analysis of phytoplankton cells as a powerful tool in water quality control. Aqua 44:132–141

    CAS  Google Scholar 

  • Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys 190:514–522

    CAS  PubMed  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500 nm region. Biochim Biophys Acta 267:538–543

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Prof. C. Wilhelm and Dr. T. Jakob, Institut für Botanik, Universität Leipzig, Leipzig, Germany for critical reading of the manuscript, and to Dr. M. Lohr, Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, Mainz, Germany for his help optimizing the de-epoxidation assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reimund Goss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goss, R. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 217, 801–812 (2003). https://doi.org/10.1007/s00425-003-1044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1044-1

Keywords

Navigation