Skip to main content
Log in

Skeletal muscle intrinsic functional properties are preserved in a model of erythropoietin deficient mice exposed to hypoxia

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Erythropoietin (Epo)-induced polycythemia is the main factor of adaptation to hypoxia. In this study, we analysed the effects of Epo deficiency on intrinsic functional properties of slow and fast twitch muscles in a model of erythropoietin deficient mice (Epo-TAgh) exposed to hypoxia. We hypothesised that Epo deficiency would be deleterious for skeletal muscle structure and phenotype, which could change its functional properties and alters the adaptive response to ambient hypoxia. Wild-type (WT) and Epo-TAgh mice were left in hypobaric chamber at 420 mm Hg pressure for 14 days. Soleus (SOL) and extensor digitorum longus (EDL) were analysed in vitro by mechanical measurements, immunohistological and biochemical analyses. The results were compared to those obtained in corresponding muscles of age-matched normoxic groups. Our data did not show any difference between the groups whatever the Epo deficiency and/or hypoxic conditions for twitch force, tetanic force, fatigue, typology and myosin heavy chain composition. Normoxic Epo-TAgh mice exhibit improved capillary-to-fibre ratio compared to WT mice in both SOL and EDL whereas no angiogenic effects of hypoxia or combined Epo-deficency/hypoxia were observed. These results suggest that skeletal muscles possess a great capacity of adaptation to Epo deficiency. Then Epo deficiency is not a sufficient factor to modify intrinsic functional properties of skeletal muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbrecht PH, Littell JK (1972) Erythrocyte life span in mice acclimatized to different degrees of hypoxia. J Appl Physiol 32:443–445

    CAS  PubMed  Google Scholar 

  2. Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011

    CAS  PubMed  Google Scholar 

  3. Bigard AX, Brunet A, Guezennec CY, Monod H (1991) Effects of chronic hypoxia and endurance training on muscle capillarity in rats. Pflugers Arch 419:225–229

    Article  CAS  PubMed  Google Scholar 

  4. Bigard AX, Brunet A, Guezennec CY, Monod H (1991) Skeletal muscle changes after endurance training at high altitude. J Appl Physiol 71:2114–2121

    CAS  PubMed  Google Scholar 

  5. Binley K, Askham Z, Iqball S, Spearman H, Martin L, de Alwis M, Thrasher AJ, Ali RR, Maxwell PH, Kingsman S, Naylor S (2002) Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood 100:2406–2413

    Article  CAS  PubMed  Google Scholar 

  6. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrlyamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  7. Bozzini CE, Barcelo AC, Conti MI, Martinez MP, Alippi RM (2005) Enhanced erythropoietin production during hypobaric hypoxia in mice under treatments to keep the erythrocyte mass from rising: implications for the adaptive role of polycythemia. High Alt Med Biol 6:238–246

    Article  CAS  PubMed  Google Scholar 

  8. Burke RE, Levine DN, Tsairis P, Zajac FE 3rd (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    CAS  PubMed  Google Scholar 

  9. Cayla JL, Maire P, Duvallet A, Wahrmann JP (2008) Erythropoietin induces a shift of muscle phenotype from fast glycolytic to slow oxidative. Int J Sports Med 29:460–465

    Article  CAS  PubMed  Google Scholar 

  10. Chaves PH, Ashar B, Guralnik JM, Fried LP (2002) Looking at the relationship between hemoglobin concentration and prevalent mobility difficulty in older women. Should the criteria currently used to define anemia in older people be reevaluated? J Am Geriatr Soc 50:1257–1264

    Article  PubMed  Google Scholar 

  11. Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197

    CAS  PubMed  Google Scholar 

  12. Desplanches D, Hoppeler H, Linossier MT, Denis C, Claassen H, Dormois D, Lacour JR, Geyssant A (1993) Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch 425:263–267

    Article  CAS  PubMed  Google Scholar 

  13. Deveci D, Marshall JM, Egginton S (2001) Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. Am J Physiol Heart Circ Physiol 281:H241–H252

    CAS  PubMed  Google Scholar 

  14. El Hasnaoui-Saadani R, Pichon A, Marchant D, Olivier P, Launay T, Quidu P, Beaudry M, Duvallet A, Richalet JP, Favret F (2009) Cerebral adaptations to chronic anemia in a model of erythropoietin-deficient mice exposed to hypoxia. Am J Physiol Regul Integr Comp Physiol 296:R801–R811

    CAS  PubMed  Google Scholar 

  15. Fahal IH, Bell GM, Bone JM, Edwards RH (1997) Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol Dial Transplant 12:119–127

    Article  CAS  PubMed  Google Scholar 

  16. Faucher M, Guillot C, Marqueste T, Kipson N, Mayet-Sornay MH, Desplanches D, Jammes Y, Badier M (2005) Matched adaptations of electrophysiological, physiological, and histological properties of skeletal muscles in response to chronic hypoxia. Pflugers Arch 450:45–52

    Article  CAS  PubMed  Google Scholar 

  17. Hill AV (1951) The effects of series compliance on the tension developed in muscle twitch. Proc R Soc Lond B Biol Sci 9(138):325

    Article  Google Scholar 

  18. Hojman P, Brolin C, Gissel H, Brandt C, Zerahn B, Pedersen BK, Gehl J (2009) Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles. PLoS One 4:e5894

    Article  PubMed  Google Scholar 

  19. Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417

    CAS  PubMed  Google Scholar 

  20. Ishihara A, Itoh K, Itoh M, Hirofuji C (2000) Effect of hypobaric hypoxia on rat soleus muscle fibers and their innervating motoneurons: a review. Jpn J Physiol 50:561–568

    Article  CAS  PubMed  Google Scholar 

  21. Ishihara A, Itoh K, Oishi Y, Itoh M, Hirofuji C, Hayashi H (1995) Effects of hypobaric hypoxia on histochemical fibre-type composition and myosin heavy chain isoform component in the rat soleus muscle. Pflugers Arch 429:601–606

    Article  CAS  PubMed  Google Scholar 

  22. Itoh K, Moritani T, Ishida K, Hirofuji C, Taguchi S, Itoh M (1990) Hypoxia-induced fibre type transformation in rat hindlimb muscles. Histochemical and electro-mechanical changes. Eur J Appl Physiol Occup Physiol 60:331–336

    Article  CAS  PubMed  Google Scholar 

  23. Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64:326–333

    Article  CAS  PubMed  Google Scholar 

  24. Jelkmann W (2007) Erythropoietin after a century of research: younger than ever. Eur J Haematol 78:183–205

    Article  CAS  PubMed  Google Scholar 

  25. Kanatous SB, Mammen PP, Rosenberg PB, Martin CM, White MD, Dimaio JM, Huang G, Muallem S, Garry DJ (2009) Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am J Physiol Cell Physiol 296:C393–C402

    Article  CAS  PubMed  Google Scholar 

  26. Kertesz N, Wu J, Chen TH, Sucov HM, Wu H (2004) The role of erythropoietin in regulating angiogenesis. Dev Biol 276:101–110

    Article  CAS  PubMed  Google Scholar 

  27. Kopple JD, Storer T, Casburi R (2005) Impaired exercise capacity and exercise training in maintenance hemodialysis patients. J Ren Nutr 15:44–48

    Article  PubMed  Google Scholar 

  28. Kouidi E, Albani M, Natsis K, Megalopoulos A, Gigis P, Guiba-Tziampiri O, Tourkantonis A, Deligiannis A (1998) The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant 13:685–699

    Article  CAS  PubMed  Google Scholar 

  29. Krogh A (1919) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415

    CAS  PubMed  Google Scholar 

  30. Launay T, Noirez P, Butler-Browne G, Agbulut O (2006) Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am J Physiol Regul Integr Comp Physiol 290:R1508–R1514

    CAS  PubMed  Google Scholar 

  31. Lensel-Corbeil G, Goubel F (1989) Series elasticity in frog sartorius muscle during release and stretch. Arch Int Physiol Biochim 97:499–509

    Article  CAS  PubMed  Google Scholar 

  32. Luedeke JD, McCall RD, Dillaman RM, Kinsey ST (2004) Properties of slow- and fast- twitch skeletal muscle from mice with an inherited capacity for hypoxic exercise. Comp Biochem Physiol A Mol Integr Physiol 138:373–382

    Article  PubMed  Google Scholar 

  33. Lundby C, Hellsten Y, Jensen MB, Munch AS, Pilegaard H (2008) Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle. J Appl Physiol 104:1154–1160

    Article  CAS  PubMed  Google Scholar 

  34. Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJ, Johnson MH, Ratcliffe PJ (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44:1149–1162

    Article  CAS  PubMed  Google Scholar 

  35. Ogilvie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, Noguchi CT (2000) Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem 275:39754–39761

    Article  CAS  PubMed  Google Scholar 

  36. Penninx BW, Pahor M, Cesari M, Corsi AM, Woodman RC, Bandinelli S, Guralnik JM, Ferrucci L (2004) Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc 52:719–724

    Article  PubMed  Google Scholar 

  37. Pette D, Tyler KR (1983) Response of succinate dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation. J Physiol 338:1–9

    CAS  PubMed  Google Scholar 

  38. Richalet JP, Souberbielle JC, Antezana AM, Dechaux M, Le Trong JL, Bienvenu A, Daniel F, Blanchot C, Zittoun J (1994) Control of erythropoiesis in humans during prolonged exposure to the altitude of 6, 542 m. Am J Physiol 266:R756–R764

    CAS  PubMed  Google Scholar 

  39. Rotter R, Menshykova M, Winkler T, Matziolis G, Stratos I, Schoen M, Bittorf T, Mittlmeier T, Vollmar B (2008) Erythropoietin improves functional and histological recovery of traumatized skeletal muscle tissue. J Orthop Res 26:1618–1626

    Article  CAS  PubMed  Google Scholar 

  40. Scoppetta C, Grassi F (2004) Erythropoietin: a new tool for muscle disorders? Med Hypotheses 63:73–75

    Article  CAS  PubMed  Google Scholar 

  41. Stevens ED, Renaud JM (1985) Use of dP/dt and rise time to estimate speed of shortening in muscle. Am J Physiol 249:R510–R513

    CAS  PubMed  Google Scholar 

  42. Suzuki N, Ohneda O, Takahashi S, Higuchi M, Mukai HY, Nakahata T, Imagawa S, Yamamoto M (2002) Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100:2279–2288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Stephane Chambris for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Launay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagström, L., Canon, F., Agbulut, O. et al. Skeletal muscle intrinsic functional properties are preserved in a model of erythropoietin deficient mice exposed to hypoxia. Pflugers Arch - Eur J Physiol 459, 713–723 (2010). https://doi.org/10.1007/s00424-009-0775-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0775-7

Keywords

Navigation