Skip to main content
Log in

Ketamine blocks voltage-gated K+ channels and causes membrane depolarization in rat mesenteric artery myocytes

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Clinical doses of ketamine typically increase blood pressure, heart rate, and cardiac output. However, the precise mechanism by which ketamine produces these cardiovascular effects remains unclear. The voltage-gated K+ (KV) channel is the major regulator of resting membrane potential (E m) and vascular tone in many arteries. Therefore, we sought to evaluate the effects of ketamine on KV currents using the standard whole-cell patch clamp recordings in single myocytes, enzymatically dispersed from rat mesenteric arteries. Ketamine [(±)-racemic mixture] inhibited KV currents reversibly and concentration dependently with a K d of 566.7 ± 32.3 μM and Hill coefficient of 0.75 ± 0.03. The inhibition of KV currents by ketamine was voltage independent, and the time courses of channel activation and inactivation were little affected. The effects of ketamine on steady-state activation and inactivation curves were also minimal. Use-dependent inhibition was not observed either. S(+)-ketamine inhibited KV currents with similar potency and efficacy as the racemic mixture. The average resting E m in rat mesenteric artery myocytes was −44.1 ± 4.2 mV, and both racemic and S(+)-ketamine induced depolarization of E m (15.8 ± 3.6 and 24.3 ± 5.0 mV at 100 μM, respectively). We conclude that ketamine induces E m depolarization in vascular myocytes by blocking KV channels in a state-independent manner, which may contribute to the increased vascular tone and blood pressure produced by this drug under a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akata T, Izumi K, Nakashima M (2001) Mechanisms of direct inhibitory action of ketamine on vascular smooth muscle in mesenteric resistance arteries. Anesthesiology 95:452–462

    Article  PubMed  CAS  Google Scholar 

  2. Altura BM, Altura BT, Carella A (1980) Effects of ketamine on vascular smooth muscle function. Br J Pharmacol 70:257–267

    PubMed  CAS  Google Scholar 

  3. Bae YM, Kim A, Kim J, Park SW, Kim TK, Lee YR, Kim B, Cho SI (2006) Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents. Biochem Biophys Res Commun 347:468–476

    Article  PubMed  CAS  Google Scholar 

  4. Bae YM, Park MK, Lee SH, Ho WK, Earm YE (1999) Contribution of Ca2+-activated K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit. J Physiol (Lond) 514:747–758

    Article  CAS  Google Scholar 

  5. Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol (Lond) 559:685–706

    CAS  Google Scholar 

  6. Belevych AE, Beck R, Tammaro P, Poston L, Smirnov SV (2002) Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovasc Res 54:152–161

    Article  PubMed  CAS  Google Scholar 

  7. Bratz IN, Swafford AN Jr, Kanagy NL, Dick GM (2005) Reduced functional expression of K+ channels in vascular smooth muscle cells from rats made hypertensive with N{omega}-nitro-l-arginine. Am J Physiol 289:H1284–H1290

    CAS  Google Scholar 

  8. Choi BH, Choi JS, Jeong SW, Hahn SJ, Yoon SH, Jo YH, Kim MS (2000) Direct block by bisindolylmaleimide of rat Kv1.5 expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther 293:634–640

    PubMed  CAS  Google Scholar 

  9. Coppock EA, Martens JR, Tamkun MM (2001) Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels. Am J Physiol 281:L1–L12

    CAS  Google Scholar 

  10. Cox RH (2002) Changes in the expression and function of arterial potassium channels during hypertension. Vascul Pharmacol 38:13–23

    Article  PubMed  CAS  Google Scholar 

  11. Cox RH, Lozinskaya I, Dietz NJ (2001) Differences in K+ current components in mesenteric artery myocytes from WKY and SHR. Am J Hypertens 14:897–907

    Article  PubMed  CAS  Google Scholar 

  12. Delpon E, Valenzuela C, Gay P, Franqueza L, Snyders DJ, Tamargo J (1997) Block of human cardiac Kv1.5 channels by loratadine: voltage-, time- and use-dependent block at concentrations above therapeutic levels. Cardiovasc Res 35:341–350

    Article  PubMed  CAS  Google Scholar 

  13. Dojo M, Kinoshita H, Iranami H, Nakahata K, Kimoto Y, Hatano Y (2002) Ketamine stereoselectively affects vasorelaxation mediated by ATP-sensitive K+ channels in the rat aorta. Anesthesiology 97:882–886

    Article  PubMed  CAS  Google Scholar 

  14. Domino EF, Zsigmond EK, Domino LE, Domino KE, Kothary SP, Domino SE (1982) Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay. Anesth Analg 61:87–92

    Article  PubMed  CAS  Google Scholar 

  15. Friederich P, Dybek A, Urban BW (2000) Stereospecific interaction of ketamine with nicotinic acetylcholine receptors in human sympathetic ganglion-like SH-SY5Y cells. Anesthesiology 93:818–824

    Article  PubMed  CAS  Google Scholar 

  16. Fukuda S, Murakawa T, Takeshita H, Toda N (1983) Direct effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth Analg 62:553–558

    Article  PubMed  CAS  Google Scholar 

  17. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  18. Han J, Kim N, Joo H, Kim E (2003) Ketamine blocks Ca2+-activated K+ channels in rabbit cerebral arterial smooth muscle cells. Am J Physiol 285:H1347–H1355

    CAS  Google Scholar 

  19. Hardman JG, Limbird LE, Gilman AG (2001) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, international edition, pp 342–347

  20. Hara Y, Chugun A, Nakaya H, Kondo H (1998) Tonic block of the sodium and calcium currents by ketamine in isolated guinea pig ventricular myocytes. J Vet Med Sci 60:479–483

    Article  PubMed  CAS  Google Scholar 

  21. Hong Z, Weir EK, Varghese A, Olschewski A (2005) Effect of normoxia and hypoxia on K+ current and resting membrane potential of fetal rabbit pulmonary artery smooth muscle. Physiol Res 54:175–184

    PubMed  CAS  Google Scholar 

  22. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332

    PubMed  CAS  Google Scholar 

  23. Ivankovich AD, Miletich DJ, Reimann C, Albrecht RF, Zahed B (1974) Cardiovascular effects of centrally administered ketamine in goats. Anesth Analg 53:924–933

    Article  PubMed  CAS  Google Scholar 

  24. Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol 278:C235–C256

    CAS  Google Scholar 

  25. Jung S, Strotmann R, Schultz G, Plant TD (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol 282:C347–C359

    CAS  Google Scholar 

  26. Katzung BG (1992) General anesthetics, in basic & clinical pharmacology, 5th edn. Appleton & Lange, Singapore, pp 350–362

    Google Scholar 

  27. Kim A, Bae YM, Kim J, Kim B, Ho WK, Earm YE, Cho SI (2004) Direct block by bisindolylmaleimide of the voltage-dependent K+ currents of rat mesenteric arterial smooth muscle. Eur J Pharmacol 483:117–126

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Gutterman DD (2002) Oxidative stress and potassium channel function. Clin Exp Pharmacol Physiol 29:305–311

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y, Terata K, Rusch NJ, Gutterman DD (2001) High glucose impairs voltage-gated K+ channel current in rat small coronary arteries. Circ Res 89:146–152

    PubMed  CAS  Google Scholar 

  30. Martens JR, Gelband CH (1998) Ion channels in vascular smooth muscle: alterations in essential hypertension. Proc Soc Exp Biol Med 218:192–203

    PubMed  CAS  Google Scholar 

  31. McDaniel SS, Platoshyn O, Yu Y, Sweeney M, Miriel VA, Golovina VA, Krick S, Lapp BR, Wang JY, Yuan JX (2001) Anorexic effect of K+ channel blockade in mesenteric arterial smooth muscle and intestinal epithelial cells. J Appl Physiol 91:2322–2333

    PubMed  CAS  Google Scholar 

  32. Michelakis E (2002) Anorectic drugs and vascular disease: the role of voltage-gated K+ channels. Vascul Pharmacol 38:51–59

    Article  PubMed  CAS  Google Scholar 

  33. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    PubMed  CAS  Google Scholar 

  34. Nelson MT, Standen NB, Brayden JE, Worley JF 3rd (1988) Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336:382–385

    Article  PubMed  CAS  Google Scholar 

  35. Pagel PS, Kampine JP, Schmeling WT, Warltier DC (1992) Ketamine depresses myocardial contractility as evaluated by the preload recruitable stroke work relationship in chronically instrumented dogs with autonomic nervous system blockade. Anesthesiology 76:564–572

    Article  PubMed  CAS  Google Scholar 

  36. Park WS, Son YK, Han J, Kim N, Ko JH, Bae YM, Earm YE (2005) Staurosporine inhibits voltage-dependent K+ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells. J Cardiovasc Pharmacol 45:260–269

    Article  PubMed  CAS  Google Scholar 

  37. Perchenet L, Hilfiger L, Mizrahi J, Clement-Chomienne O (2001) Effects of anorexinogen agents on cloned voltage-gated K+ channel hKv1.5. J Pharmacol Exp Ther 298:1108–1119

    PubMed  CAS  Google Scholar 

  38. Stanley V, Hunt J, Willis KW, Stephen CR (1968) Cardiovascular and respiratory function with CI-581. Anesth Analg 47:760–768

    Article  PubMed  CAS  Google Scholar 

  39. Tammaro P, Smith AL, Hutchings SR, Smirnov SV (2004) Pharmacological evidence for a key role of voltage-gated K+ channels in the function of rat aortic smooth muscle cells. Br J Pharmacol 143:303–317

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA (2005) Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. Am J Physiol 288:L1049–L1058

    Article  CAS  Google Scholar 

  41. White PF, Way WL, Trevor AJ (1982) Ketamine—its pharmacology and therapeutic uses. Anesthesiology 56:119–136

    PubMed  CAS  Google Scholar 

  42. Yamazaki M, Ito Y, Kuze S, Shibuya N, Momose Y (1992) Effects of ketamine on voltage-dependent Ca2+ currents in single smooth muscle cells from rabbit portal vein. Pharmacology 45:162–169

    Article  PubMed  CAS  Google Scholar 

  43. Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte Jr JV, Gaine SP, Orens JB, Rubin LJ (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400–1406

    PubMed  CAS  Google Scholar 

  44. Yuan XJ (1995) Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ Res 77:370–378

    PubMed  CAS  Google Scholar 

  45. Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351:726–727

    Article  PubMed  CAS  Google Scholar 

  46. Zhou ZS, Zhao ZQ (2000) Ketamine blockage of both tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels of rat dorsal root ganglion neurons. Brain Res Bull 52:427–433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Konkuk University in 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Bae, Y.M., Sung, D.J. et al. Ketamine blocks voltage-gated K+ channels and causes membrane depolarization in rat mesenteric artery myocytes. Pflugers Arch - Eur J Physiol 454, 891–902 (2007). https://doi.org/10.1007/s00424-007-0240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0240-4

Keywords

Navigation