Skip to main content

Advertisement

Log in

Individualized radiotherapy (iRT) concepts for locally advanced pancreatic cancer (LAPC): indications and prognostic factors

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Novel techniques in radiation oncology have significantly improved the therapeutic window in locally advanced pancreatic cancer LAPC. In about one third of the patients, chemoradiation can lead to secondary resectability, contributing to an increase in outcome. Dose-escalation approaches using stereotactic body radiotherapy (SBRT) or advanced treatments such as intensity-modulated radiotherapy (IMRT) can exploit the biological benefits of hypofractionation, or use “dose painting” approaches to target defined subvolumes. Prognostic subgroups of patients have been identified, based on molecular markers such as CA 19–9, nutritional factors, diabetes or immunological properties of tumor and normal tissue.

Purpose

The aim of the present manuscript is to summarize data on downsizing for locally advanced pancreatic cancer (LAPC) and to elucidate the role of individualized radiotherapy (iRT).

Conclusion

Future concepts focus on iRT based on prognostic factors leading to a true personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gillen S, Schuster T, Meyer Zum BC, Friess H, Kleeff J (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7:e1000267

    Article  PubMed Central  PubMed  Google Scholar 

  2. Combs SE, Habermehl D, Werner J, Buchler MW, Debus J (2011) Strategies for preoperative downsizing in patients with local nonresectable pancreatic cancer. Chirurg 82:981–988

    Article  CAS  PubMed  Google Scholar 

  3. Combs SE, Ganswindt U, Foote RL, Kondziolka D, Tonn JC (2012) State-of-the-art treatment alternatives for base of skull meningiomas: complementing and controversial indications for neurosurgery, stereotactic and robotic based radiosurgery or modern fractionated radiation techniques. Radiat Oncol 7:226

    Article  PubMed Central  PubMed  Google Scholar 

  4. Combs SE, Adeberg S, Dittmar JO, Welzel T, Rieken S, Habermehl D et al (2013) Skull base meningiomas: Long-term results and patient self-reported outcome in 507 patients treated with fractionated stereotactic radiotherapy (FSRT) or intensity modulated radiotherapy (IMRT). Radiother Oncol 106:186–191

    Article  PubMed  Google Scholar 

  5. Combs SE, Welzel T, Schulz-Ertner D, Huber PE, Debus J (2010) Differences in clinical results after LINAC-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schwannomas. Int J Radiat Oncol Biol Phys 76:193–200

    Article  PubMed  Google Scholar 

  6. Combs SE, Thilmann C, Debus J, Schulz-Ertner D (2006) Local radiotherapeutic management of ependymomas with fractionated stereotactic radiotherapy (FSRT). BMC Cancer 6:222

    Article  PubMed Central  PubMed  Google Scholar 

  7. Combs SE, Thilmann C, Debus J, Schulz-Ertner D (2006) Long-term outcome of stereotactic radiosurgery (SRS) in patients with acoustic neuromas. Int J Radiat Oncol Biol Phys 64:1341–1347

    Article  PubMed  Google Scholar 

  8. Combs SE, Thilmann C, Edler L, Debus J, Schulz-Ertner D (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869

    Article  PubMed  Google Scholar 

  9. Habermehl D, Combs SE (2013) Stereotactic body radiotherapy for the treatment of hepatocellular cancer. Pooled analysis of two phase I/II trials. Strahlenther Onkol 189:1051–1053

    Article  CAS  PubMed  Google Scholar 

  10. Combs SE, Herfarth KK, Habermehl D, Debus J (2010) Radiotherapy of hepatic metastases. Chirurg 81:526–532

    Article  CAS  PubMed  Google Scholar 

  11. Habermehl D, Herfarth KK, Bermejo JL, Hof H, Rieken S, Kuhn S et al (2013) Single-dose radiosurgical treatment for hepatic metastases—therapeutic outcome of 138 treated lesions from a single institution. Radiat Oncol 8:175

    Article  PubMed Central  PubMed  Google Scholar 

  12. Brunner TB, Nestle U, Grosu AL, Partridge M (2015) SBRT in pancreatic cancer: what is the therapeutic window? Radiother Oncol 114:109–116

    Article  PubMed  Google Scholar 

  13. Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA et al (2009) Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 115:665–672

    Article  PubMed  Google Scholar 

  14. Schellenberg D, Kim J, Christman-Skieller C, Chun CL, Columbo LA, Ford JM et al (2011) Single-fraction stereotactic body radiation therapy and sequential gemcitabine for the treatment of locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 81:181–188

    Article  PubMed  Google Scholar 

  15. Chuong MD, Springett GM, Freilich JM, Park CK, Weber JM, Mellon EA et al (2013) Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys 86:516–522

    Article  PubMed  Google Scholar 

  16. Combs SE, Habermehl D, Kessel K, Bergmann F, Werner J, Brecht I et al (2013) Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort. Strahlenther Onkol 189:738–744

    Article  CAS  PubMed  Google Scholar 

  17. Bittner MI, Grosu AL, Brunner TB (2015) Comparison of toxicity after IMRT and 3D-conformal radiotherapy for patients with pancreatic cancer - a systematic review. Radiother Oncol 114:117–121

    Article  PubMed  Google Scholar 

  18. Combs SE, Habermehl D, Kessel KA, Bergmann F, Werner J, Naumann P et al (2014) Prognostic impact of CA 19–9 on outcome after neoadjuvant chemoradiation in patients with locally advanced pancreatic cancer. Ann Surg Oncol 21:2801–2807

    Article  PubMed  Google Scholar 

  19. Habermehl D, Kessel K, Welzel T, Hof H, Abdollahi A, Bergmann F et al (2012) Neoadjuvant chemoradiation with Gemcitabine for locally advanced pancreatic cancer. Radiat Oncol 7:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Amano R, Kimura K, Nakata B, Yamazoe S, Motomura H, Yamamoto A et al (2015) Pancreatectomy with major arterial resection after neoadjuvant chemoradiotherapy gemcitabine and S-1 and concurrent radiotherapy for locally advanced unresectable pancreatic cancer. Surgery 2015 Apr 18.

  21. Andriulli A, Festa V, Botteri E, Valvano MR, Koch M, Bassi C et al (2012) Neoadjuvant/preoperative gemcitabine for patients with localized pancreatic cancer: a meta-analysis of prospective studies. Ann Surg Oncol 19:1644–1662

    Article  PubMed  Google Scholar 

  22. Cho IR, Chung MJ, Bang S, Park SW, Chung JB, Song SY et al (2013) Gemcitabine based neoadjuvant chemoradiotherapy therapy in patients with borderline resectable pancreatic cancer. Pancreatology 13:539–543

    Article  CAS  PubMed  Google Scholar 

  23. Evans DB, Varadhachary GR, Crane CH, Sun CC, Lee JE, Pisters PW et al (2008) Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. J Clin Oncol 26:3496–3502

    Article  CAS  PubMed  Google Scholar 

  24. Golcher H, Brunner TB, Witzigmann H, Marti L, Bechstein WO, Bruns C et al (2015) Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlenther Onkol 191:7–16

    Article  PubMed Central  PubMed  Google Scholar 

  25. Joensuu TK, Kiviluoto T, Karkkainen P, Vento P, Kivisaari L, Tenhunen M et al (2004) Phase I-II trial of twice-weekly gemcitabine and concomitant irradiation in patients undergoing pancreaticoduodenectomy with extended lymphadenectomy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 60:444–452

    Article  CAS  PubMed  Google Scholar 

  26. Kunzmann V, Herrmann K, Bluemel C, Kapp M, Hartlapp I, Steger U (2014) Intensified neoadjuvant chemotherapy with Nab-paclitaxel plus gemcitabine followed by FOLFIRINOX in a patient with locally advanced unresectable pancreatic cancer. Case Rep Oncol 7:648–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Landry J, Catalano PJ, Staley C, Harris W, Hoffman J, Talamonti M et al (2010) Randomized phase II study of gemcitabine plus radiotherapy versus gemcitabine, 5-fluorouracil, and cisplatin followed by radiotherapy and 5-fluorouracil for patients with locally advanced, potentially resectable pancreatic adenocarcinoma. J Surg Oncol 101:587–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Leone F, Gatti M, Massucco P, Colombi F, Sperti E, Campanella D et al (2013) Induction gemcitabine and oxaliplatin therapy followed by a twice-weekly infusion of gemcitabine and concurrent external-beam radiation for neoadjuvant treatment of locally advanced pancreatic cancer: a single institutional experience. Cancer 119:277–284

    Article  CAS  PubMed  Google Scholar 

  29. Varadhachary GR, Wolff RA, Crane CH, Sun CC, Lee JE, Pisters PW et al (2008) Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head. J Clin Oncol 26:3487–3495

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe F, Honda G, Kurata M, Tsuruta K, Tokashiki T, Funada N (2009) A case report-neoadjuvant chemoradiotherapy with combination of S-1 and gemcitabine in a patient with locally advanced pancreatic cancer. Gan To Kagaku Ryoho 36:2430–2432

    PubMed  Google Scholar 

  31. Sho M, Akahori T, Tanaka T, Kinoshita S, Nagai M, Nishiwada S et al (2015) Optimal indication of neoadjuvant chemoradiotherapy for pancreatic cancer. Langenbecks Arch Surg

  32. Roland CL, Yang AD, Katz MH, Chatterjee D, Wang H, Lin H et al (2015) Neoadjuvant therapy is associated with a reduced lymph node ratio in patients with potentially resectable pancreatic cancer. Ann Surg Oncol 22:1168–1175

    Article  PubMed  Google Scholar 

  33. Bertocchi P, Abeni C, Meriggi F, Rota L, Rizzi A, Di Biasi B et al (2015) Gemcitabine Plus Nab-Paclitaxel as Second-Line and Beyond Treatment for Metastatic Pancreatic Cancer: a Single Institution Retrospective Analysis. Rev Recent Clin Trials

  34. Hosein PJ, de Lima LG Jr, Pastorini VH, Gomez C, Macintyre J, Zayas G et al (2013) A phase II trial of nab-paclitaxel as second-line therapy in patients with advanced pancreatic cancer. Am J Clin Oncol 36:151–156

    Article  CAS  PubMed  Google Scholar 

  35. Lo RG, Santeufemia DA, Foltran L, Bidoli E, Basso SM, Lumachi F (2015) Prognostic factors of survival in patients treated with nab-paclitaxel plus gemcitabine regimen for advanced or metastatic pancreatic cancer: a single institutional experience. Oncotarget 6:8255–8260

    Article  Google Scholar 

  36. Olowokure O, Torregroza-Sanchez MP, Bedoya-Apraez ID (2013) Gemcitabine plus Nab-paclitaxel with chemoradiation in locally advanced pancreatic cancer (LAPC). J Gastrointest Oncol 4:E16–E18

    PubMed Central  PubMed  Google Scholar 

  37. Tabernero J, Chiorean EG, Infante JR, Hingorani SR, Ganju V, Weekes C et al (2015) Prognostic factors of survival in a randomized phase III trial (MPACT) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic pancreatic cancer. Oncologist 20:143–150

    Article  CAS  PubMed  Google Scholar 

  38. Vogel A, Pelzer U, Salah-Eddin AB, Koster W (2014) First-line nab-paclitaxel and gemcitabine in patients with metastatic pancreatic cancer from routine clinical practice. In Vivo 28:1135–1140

    CAS  PubMed  Google Scholar 

  39. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29:4548–4554

    Article  Google Scholar 

  40. Blazer M, Wu C, Goldberg RM, Phillips G, Schmidt C, Muscarella P et al (2015) Neoadjuvant modified (m) FOLFIRINOX for locally advanced unresectable (LAPC) and borderline resectable (BRPC) adenocarcinoma of the pancreas. Ann Surg Oncol 22:1153–1159

    Article  PubMed Central  PubMed  Google Scholar 

  41. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825

    Article  CAS  PubMed  Google Scholar 

  42. Gunturu KS, Yao X, Cong X, Thumar JR, Hochster HS, Stein SM et al (2013) FOLFIRINOX for locally advanced and metastatic pancreatic cancer: single institution retrospective review of efficacy and toxicity. Med Oncol 30:361

    Article  PubMed  Google Scholar 

  43. Hosein PJ, Macintyre J, Kawamura C, Maldonado JC, Ernani V, Loaiza-Bonilla A et al (2012) A retrospective study of neoadjuvant FOLFIRINOX in unresectable or borderline-resectable locally advanced pancreatic adenocarcinoma. BMC Cancer 12:199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Marthey L, Sa-Cunha A, Blanc JF, Gauthier M, Cueff A, Francois E et al (2015) FOLFIRINOX for locally advanced pancreatic adenocarcinoma: results of an AGEO multicenter prospective observational cohort. Ann Surg Oncol 22:295–301

    Article  CAS  PubMed  Google Scholar 

  45. Moorcraft SY, Khan K, Peckitt C, Watkins D, Rao S, Cunningham D et al (2014) FOLFIRINOX for locally advanced or metastatic pancreatic ductal adenocarcinoma: the royal marsden experience. Clin Colorectal Cancer 13:232–238

    Article  PubMed  Google Scholar 

  46. Peddi PF, Lubner S, McWilliams R, Tan BR, Picus J, Sorscher SM et al (2012) Multi-institutional experience with FOLFIRINOX in pancreatic adenocarcinoma. JOP 13:497–501

    PubMed  Google Scholar 

  47. Naumann P, Habermehl D, Welzel T, Debus J, Combs SE (2013) Outcome after neoadjuvant chemoradiation and correlation with nutritional status in patients with locally advanced pancreatic cancer. Strahlenther Onkol 189:745–752

    Article  CAS  PubMed  Google Scholar 

  48. Ferrucci LM, Bell D, Thornton J, Black G, McCorkle R, Heimburger DC et al (2011) Nutritional status of patients with locally advanced pancreatic cancer: a pilot study. Support Care Cancer 19:1729–1734

    Article  PubMed Central  PubMed  Google Scholar 

  49. Bachmann J, Heiligensetzer M, Krakowski-Roosen H, Buchler MW, Friess H, Martignoni ME (2008) Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surg 12:1193–1201

    Article  PubMed  Google Scholar 

  50. Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147:4160–4168

    Article  CAS  PubMed  Google Scholar 

  51. Di Sebastiano KM, Yang L, Zbuk K, Wong RK, Chow T, Koff D et al (2013) Accelerated muscle and adipose tissue loss may predict survival in pancreatic cancer patients: the relationship with diabetes and anaemia. Br J Nutr 109:302–312

    Article  PubMed  Google Scholar 

  52. Montgomery RC, Hoffman JP, Riley LB, Rogatko A, Ridge JA, Eisenberg BL (1997) Prediction of recurrence and survival by post-resection CA 19–9 values in patients with adenocarcinoma of the pancreas. Ann Surg Oncol 4:551–556

    Article  CAS  PubMed  Google Scholar 

  53. Kondo N, Murakami Y, Uemura K, Hayashidani Y, Sudo T, Hashimoto Y et al (2010) Prognostic impact of perioperative serum CA 19–9 levels in patients with resectable pancreatic cancer. Ann Surg Oncol 17:2321–2329

    Article  PubMed  Google Scholar 

  54. Kinsella TJ, Seo Y, Willis J, Stellato TA, Siegel CT, Harpp D et al (2008) The impact of resection margin status and postoperative CA19-9 levels on survival and patterns of recurrence after postoperative high-dose radiotherapy with 5-FU-based concurrent chemotherapy for resectable pancreatic cancer. Am J Clin Oncol 31:446–453

    Article  CAS  PubMed  Google Scholar 

  55. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K et al (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297:267–277

    Article  CAS  PubMed  Google Scholar 

  56. Liu P, Zhu Y, Liu L (2015) Elevated serum CA72-4 levels predict poor prognosis in pancreatic adenocarcinoma after intensity-modulated radiation therapy. Oncotarget 6:9592–9599

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kim H, Saka B, Knight S, Borges M, Childs E, Klein A et al (2014) Having pancreatic cancer with tumoral loss of ATM and normal TP53 protein expression is associated with a poorer prognosis. Clin Cancer Res 20:1865–1872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Gundewar C, Sasor A, Hilmersson KS, Andersson R, Ansari D (2015) The role of SPARC expression in pancreatic cancer progression and patient survival. Scand J Gastroenterol 1–5

  59. Mantoni TS, Schendel RR, Rodel F, Niedobitek G, Al Assar O, Masamune A et al (2008) Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biol Ther 7:1806–1815

    Article  CAS  PubMed  Google Scholar 

  60. Sinn M, Sinn BV, Striefler JK, Lindner JL, Stieler JM, Lohneis P et al (2014) SPARC expression in resected pancreatic cancer patients treated with gemcitabine: results from the CONKO-001 study. Ann Oncol 25:1025–1032

    Article  CAS  PubMed  Google Scholar 

  61. Aref A, Berri R (2012) Role of radiation therapy in the management of locally advanced pancreatic cancer. J Clin Oncol 30:1564–1565

    Article  PubMed  Google Scholar 

  62. Bachet JB, Marechal R, Demetter P, Bonnetain F, Couvelard A, Svrcek M et al (2012) Contribution of CXCR4 and SMAD4 in predicting disease progression pattern and benefit from adjuvant chemotherapy in resected pancreatic adenocarcinoma. Ann Oncol 23:2327–2335

    Article  CAS  PubMed  Google Scholar 

  63. Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, Zhang X et al (2009) SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res 15:4674–4679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Crane CH, Varadhachary GR, Yordy JS, Staerkel GA, Javle MM, Safran H et al (2011) Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol 29:3037–3043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Singh P, Srinivasan R, Wig JD (2012) SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 41:541–546

    Article  CAS  PubMed  Google Scholar 

  66. Yamada S, Fujii T, Shimoyama Y, Kanda M, Nakayama G, Sugimoto H et al (2015) SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer. Pancreas 44:660–664

    Article  CAS  PubMed  Google Scholar 

  67. Greenhalf W, Ghaneh P, Neoptolemos JP, Palmer DH, Cox TF, Lamb RF et al (2014) Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J Natl Cancer Inst 106:djt347

    Article  PubMed  Google Scholar 

  68. Nordh S, Ansari D, Andersson R (2014) hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: a systematic review. World J Gastroenterol 20:8482–8490

    Article  PubMed Central  PubMed  Google Scholar 

  69. Knaebel HP, Marten A, Schmidt J, Hoffmann K, Seiler C, Lindel K et al (2005) Phase III trial of postoperative cisplatin, interferon alpha-2b, and 5-FU combined with external radiation treatment versus 5-FU alone for patients with resected pancreatic adenocarcinoma—CapRI: study protocol [ISRCTN62866759]. BMC Cancer 5:37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Marten A, Schmidt J, Ose J, Harig S, Abel U, Munter MW et al (2009) A randomized multicentre phase II trial comparing adjuvant therapy in patients with interferon alpha-2b and 5-FU alone or in combination with either external radiation treatment and cisplatin (CapRI) or radiation alone regarding event-free survival - CapRI-2. BMC Cancer 9:160

    Article  PubMed Central  PubMed  Google Scholar 

  71. Schmidt J, Jager D, Hoffmann K, Buchler MW, Marten A (2007) Impact of interferon-alpha in combined chemoradioimmunotherapy for pancreatic adenocarcinoma (CapRI): first data from the immunomonitoring. J Immunother 30:108–115

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt J, Patrut EM, Ma J, Jager D, Knaebel HP, Buchler MW et al (2006) Immunomodulatory impact of interferon-alpha in combination with chemoradiation of pancreatic adenocarcinoma (CapRI). Cancer Immunol Immunother 55:1396–1405

    Article  CAS  PubMed  Google Scholar 

  73. Mizukami T, Kamachi H, Mitsuhashi T, Tsuruga Y, Hatanaka Y, Kamiyama T et al (2014) Immunohistochemical analysis of cancer stem cell markers in pancreatic adenocarcinoma patients after neoadjuvant chemoradiotherapy. BMC Cancer 14:687

    Article  PubMed Central  PubMed  Google Scholar 

  74. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C et al (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102:340–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kahlert C, Bergmann F, Beck J, Welsch T, Mogler C, Herpel E et al (2011) Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer 11:275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Combs SE, Schulz-Ertner D, Herfarth KK, Krempien R, Debus J (2006) Advances in radio-oncology. From precision radiotherapy with photons to ion therapy with protons and carbon ions. Chirurg 77:1126–1132

    Article  CAS  PubMed  Google Scholar 

  77. Kessel KA, Jager A, Habermehl D, Ruppell J, Bendl R, Debus J et al (2015) Changes in Gross Tumor Volume and Organ Motion Analysis During Neoadjuvant Radiochemotherapy in Patients With Locally Advanced Pancreatic Cancer Using an In-House Analysis System. Technol Cancer Res Treat

  78. Habermehl D, Henkner K, Ecker S, Jakel O, Debus J, Combs SE (2013) Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J Radiat Res 54(Suppl 1):i61–i68

    Article  PubMed Central  PubMed  Google Scholar 

  79. Richter D, Graeff C, Jakel O, Combs SE, Durante M, Bert C (2014) Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiother Oncol 113:290–295

    Article  PubMed  Google Scholar 

  80. Richter D, Saito N, Chaudhri N, Hartig M, Ellerbrock M, Jakel O et al (2014) Four-dimensional patient dose reconstruction for scanned ion beam therapy of moving liver tumors. Int J Radiat Oncol Biol Phys 89:175–181

    Article  PubMed  Google Scholar 

  81. El Shafie RA, Habermehl D, Rieken S, Mairani A, Orschiedt L, Brons S et al (2013) In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines. J Radiat Res 54(Suppl 1):i113–i119

    Article  PubMed Central  PubMed  Google Scholar 

  82. Engelsman M, DeLaney TF, Hong TS (2011) Proton radiotherapy: the biological effect of treating alternating subsets of fields for different treatment fractions. Int J Radiat Oncol Biol Phys 79:616–622

    Article  PubMed Central  PubMed  Google Scholar 

  83. Kozak KR, Kachnic LA, Adams J, Crowley EM, Alexander BM, Mamon HJ et al (2007) Dosimetric feasibility of hypofractionated proton radiotherapy for neoadjuvant pancreatic cancer treatment. Int J Radiat Oncol Biol Phys 68:1557–1566

    Article  PubMed  Google Scholar 

  84. Ling TC, Slater JM, Mifflin R, Nookala P, Grove R, Ly AM et al (2015) Evaluation of normal tissue exposure in patients receiving radiotherapy for pancreatic cancer based on RTOG 0848. J Gastrointest Oncol 6:108–114

    PubMed Central  PubMed  Google Scholar 

  85. Hoppe BS, Mamalui-Hunter M, Mendenhall NP, Li Z, Indelicato DJ (2013) Improving the therapeutic ratio by using proton therapy in patients with stage I or II seminoma. Am J Clin Oncol 36:31–37

    Article  CAS  PubMed  Google Scholar 

  86. Lee RY, Nichols RC Jr, Huh SN, Ho MW, Li Z, Zaiden R et al (2013) Proton therapy may allow for comprehensive elective nodal coverage for patients receiving neoadjuvant radiotherapy for localized pancreatic head cancers. J Gastrointest Oncol 4:374–379

    PubMed Central  PubMed  Google Scholar 

  87. Nichols RC Jr, George TJ, Zaiden RA Jr, Awad ZT, Asbun HJ, Huh S et al (2013) Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity. Acta Oncol 52:498–505

    Article  CAS  PubMed  Google Scholar 

  88. Terashima K, Demizu Y, Hashimoto N, Jin D, Mima M, Fujii O et al (2012) A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother Oncol 103:25–31

    Article  PubMed  Google Scholar 

  89. Hong TS, Ryan DP, Borger DR, Blaszkowsky LS, Yeap BY, Ancukiewicz M et al (2014) A phase 1/2 and biomarker study of preoperative short course chemoradiation with proton beam therapy and capecitabine followed by early surgery for resectable pancreatic ductal adenocarcinoma. Int J Radiat Oncol Biol Phys 89:830–838

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie E. Combs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combs, S.E. Individualized radiotherapy (iRT) concepts for locally advanced pancreatic cancer (LAPC): indications and prognostic factors. Langenbecks Arch Surg 400, 749–756 (2015). https://doi.org/10.1007/s00423-015-1309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-015-1309-8

Keywords

Navigation