Skip to main content
Log in

Acute effect of high-intensity cycling exercise on carotid artery hemodynamic pulsatility

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Investigate the effects of acute high-intensity exercise on common carotid artery (CCA) dimensions, stiffness, and wave intensity.

Methods

Fifty-five healthy men and women (22 ± 5 year; 24.5 ± 2.7 kg m−2) underwent 30 s of high-intensity cycling (HIC; Wingate anaerobic test). CCA diameter, stiffness [β-stiffness, Elastic Modulus (E p)], pulsatility index (PI), forward wave intensities [due to LV contraction (W 1) and LV suction (W 2)], and reflected wave intensity [negative area (NA)] were assessed using a combination of Doppler ultrasound, wave intensity analysis, and applanation tonometry at baseline and immediately post-HIC.

Results

CCA β-stiffness, E p, PI and pulse pressure increased significantly immediately post-HIC (p < 0.05). CCA diameter decreased acutely post-HIC (p < 0.05). There were also significant increases in W 1 and NA and a significant decrease in W 2 (p < 0.05). A significant correlation was found between change in W 1 and PI (r = 0.438, p < 0.05), from rest to recovery as well as a significant inverse correlation between W 2 and PI (r = −0.378, p < 0.05). Change in PI was not associated with change in CCA stiffness or NA (p > 0.05).

Conclusions

Acute HIC results in CCA constriction and increases in CCA stiffness along with increases in hemodynamic pulsatility. The increase in pulsatility may be due to a combination of increased forward wave intensity from increased LV contractility into a smaller vessel (i.e. impaired matching of diameter and flow) coupled with reduced LV suction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

CCA:

Common carotid artery

DBP:

Diastolic blood pressure

ECG:

Electrocardiogram

E p :

Elastic modulus

HIC:

High-intensity cycling

IMT:

Intima-media thickness

MAP:

Mean arterial pressure

NA:

Negative area

LV:

Left ventricle

PI:

Pulsatility index

PP:

Pulse pressure

PWV:

Pulse wave velocity

RC:

Reflection coefficient

SBP:

Systolic blood pressure

WAT:

Wingate anaerobic test

W 1 :

Forward wave intensity

W 2 :

Suction wave intensity

References

  • Alaraj AM, Chamoun RB, Dahdaleh NS, Haddad GF, Comair YG (2005) Spontaneous subdural haematoma in anabolic steroids dependent weight lifters: reports of two cases and review of literature. Acta Neurochir (Wien) 147(1):85–87. doi:10.1007/s00701-004-0415-0 (Discussion 87–88)

    Article  CAS  Google Scholar 

  • Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA (2009) Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord 9:3. doi:10.1186/1472-6823-9-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Bakker SL, de Leeuw FE, de Groot JC, Hofman A, Koudstaal PJ, Breteler MM (1999) Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly. Neurology 52(3):578–583

    Article  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (Bethesda, MD, 1985) 98(6):1985–1990. doi:10.1152/japplphysiol.01095.2004

    Article  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi:10.1113/jphysiol.2007.142109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH (2011) Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 57(14):1511–1522. doi:10.1016/j.jacc.2010.12.017

    Article  PubMed  Google Scholar 

  • Cote AT, Bredin SS, Phillips AA, Koehle, Glier MB, Devlin AM, DE Warburton (2013) Left ventricular mechanics and arterial-ventricular coupling following high-intensity interval exercise. J Appl Physiol (1985) 115(11):1705–1713. doi:10.1152/japplphysiol.00576.2013

    Article  Google Scholar 

  • Farasat SM, Morrell CH, Scuteri A, Ting CT, Yin FC, Spurgeon HA, Chen CH, Lakatta EG, Najjar SS (2008) Pulse pressure is inversely related to aortic root diameter implications for the pathogenesis of systolic hypertension. Hypertension 51(2):196–202. doi:10.1161/HYPERTENSIONAHA.107.099515

    Article  CAS  PubMed  Google Scholar 

  • Fok H, Guilcher A, Li Y, Brett S, Shah A, Clapp B, Chowienczyk P (2014) Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates. Hypertension 63(5):1050–1055. doi:10.1161/HYPERTENSIONAHA.113.02955

    Article  CAS  PubMed  Google Scholar 

  • Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ (2013) Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring, MD) 21(11):2249–2255. doi:10.1002/oby.20379

    Article  CAS  Google Scholar 

  • Harada A, Okada T, Niki K, Chang D, Sugawara M (2002) On-line noninvasive one-point measurements of pulse wave velocity. Heart Vessels 17(2):61–68. doi:10.1007/s003800200045

    Article  PubMed  Google Scholar 

  • Hayashi K, Miyachi M, Seno N, Takahashi K, Yamazaki K, Sugawara J, Yokoi T, Onodera S, Mesaki N (2006) Variations in carotid arterial compliance during the menstrual cycle in young women. Exp Physiol 91(2):465–472. doi:10.1113/expphysiol.2005.032011

    Article  PubMed  Google Scholar 

  • Haykowsky MJ, Findlay JM, Ignaszewski AP (1996) Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports. Clin J Sport Med Off J Can Acad Sport Med 6(1):52–55

    Article  CAS  Google Scholar 

  • Heffernan KS, Lefferts WK (2013) A new exercise central hemodynamics paradigm: time for reflection or expansion? Hypertension 62(5):e35. doi:10.1161/HYPERTENSIONAHA.113.02065

    Article  CAS  PubMed  Google Scholar 

  • Heffernan KS, Lefferts WK, Augustine JA (2013) Hemodynamic correlates of late systolic flow velocity augmentation in the carotid artery. Int J Hypertens 2013:920605. doi:10.1155/2013/920605

    Article  PubMed Central  PubMed  Google Scholar 

  • Heinrich KM, Patel PM, O’Neal JL, Heinrich BS (2014) High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health 14:789. doi:10.1186/1471-2458-14-789

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes AD, Park C, Davies J, Francis D, Mc GTSA, Mayet J, Parker KH (2013) Limitations of augmentation index in the assessment of wave reflection in normotensive healthy individuals. PLoS One 8(3):e59371. doi:10.1371/journal.pone.0059371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones CJ, Sugawara M, Kondoh Y, Uchida K, Parker KH (2002) Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 16(3):91–98

    Article  PubMed  Google Scholar 

  • Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308(9):875–881. doi:10.1001/2012.jama.10503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsen S, Danielsen JH, Sondergard SD, Sogaard D, Vigelsoe A, Dybboe R, Skaaby S, Dela F, Helge JW (2014) The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports. doi:10.1111/sms.12252

    Google Scholar 

  • Lefferts WK, Augustine JA, Heffernan KS (2014) Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front Physiol 5:101. doi:10.3389/fphys.2014.00101

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu J, Yuan LJ, Zhang ZM, Duan YY, Xue JH, Yang YL, Guo Q, Cao TS (2011) Effects of acute cold exposure on carotid and femoral wave intensity indexes: evidence for reflection coefficient as a measure of distal vascular resistance. J Appl Physiol (1985) 110(3):738–745. doi:10.1152/japplphysiol.00863.2010

    Article  Google Scholar 

  • Marstrand JR, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL, Larsson HB (2002) Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke J Cereb Circ 33(4):972–976

    Article  CAS  Google Scholar 

  • Mitchell GF (2008) Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (Bethesda, MD, 1985) 105(5):1652–1660. doi:10.1152/japplphysiol.90549.2008

    Article  Google Scholar 

  • Mitchell GF (2009) Arterial Stiffness and Wave Reflection: biomarkers of Cardiovascular Risk. Artery res 3(2):56–64. doi:10.1016/j.artres.2009.02.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitchell GF (2014) Arterial stiffness and hypertension. Hypertension 64(1):13–18. doi:10.1161/hypertensionaha.114.00921

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL Jr, Neutel J, Kerwin LJ, Block AJ, Pfeffer MA (2003) Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation 108(13):1592–1598. doi:10.1161/01.CIR.0000093435.04334.1F

    Article  PubMed  Google Scholar 

  • Mitchell GF, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E, Vasan RS, Levy D, Benjamin EJ (2005) Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the framingham Heart study. Circulation 112(24):3722–3728. doi:10.1161/circulationaha.105.551168

    Article  PubMed  Google Scholar 

  • Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson O, Garcia M, Aspelund T, Harris TB, Gudnason V, Launer LJ (2011) Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility-reykjavik study. Brain J Neurol 134(Pt 11):3398–3407. doi:10.1093/brain/awr253

    Article  Google Scholar 

  • Nichols W, O’Rourke M, Vlachopoulos C (2011) Mcdonald’s blood flow in arteries, sixth edition: theoretical, experimental and clinical principles. CRC Press, London

    Google Scholar 

  • Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17(1):12–21. doi:10.1007/s003800200037

    Article  PubMed  Google Scholar 

  • Nobrega AC, O’Leary D, Silva BM, Marongiu E (2014) Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. Biomed Res Int 2014:478965. doi:10.1155/2014/478965

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Rourke M (1990) Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 15(4):339–347

    Article  PubMed  Google Scholar 

  • Parker KH, Jones CJ, Dawson JR, Gibson DG (1988) What stops the flow of blood from the heart? Heart Vessels 4(4):241–245

    Article  CAS  PubMed  Google Scholar 

  • Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol 295(1):R236–R242. doi:10.1152/ajpregu.00069.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rakobowchuk M, Stuckey MI, Millar PJ, Gurr L, Macdonald MJ (2009) Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males. Eur J Appl Physiol 105(5):787–795. doi:10.1007/s00421-008-0964-7

    Article  PubMed  Google Scholar 

  • Rakobowchuk M, Harris E, Taylor A, Cubbon RM, Birch KM (2013) Moderate and heavy metabolic stress interval training improve arterial stiffness and heart rate dynamics in humans. Eur J Appl Physiol 113(4):839–849. doi:10.1007/s00421-012-2486-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossow L, Fahs CA, Guerra M, Jae SY, Heffernan KS, Fernhall B (2010) Acute effects of supramaximal exercise on carotid artery compliance and pulse pressure in young men and women. Eur J Appl Physiol 110(4):729–737. doi:10.1007/s00421-010-1552-1

    Article  PubMed  Google Scholar 

  • Sagiv M, Ben-Sira D, Goldhammer E (1999) Direct vs. indirect blood pressure measurement at peak anaerobic exercise. Int J Sports Med 20(5):275–278. doi:10.1055/s-2007-971130

    Article  CAS  PubMed  Google Scholar 

  • Schachinger H, Weinbacher M, Kiss A, Ritz R, Langewitz W (2001) Cardiovascular indices of peripheral and central sympathetic activation. Psychosom Med 63(5):788–796

    Article  CAS  PubMed  Google Scholar 

  • Schultz MG, Davies JE, Roberts-Thomson P, Black JA, Hughes AD, Sharman JE (2013) Exercise central (aortic) blood pressure is predominantly driven by forward traveling waves, not wave reflection. Hypertension 62(1):175–182. doi:10.1161/HYPERTENSIONAHA.111.00584

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Esch BT, Haykowsky MJ, Paterson I, Warburton DE, Chow K, Cheng Baron J, Lopaschuk GD, Thompson RB (2010) Effects of high intensity exercise on biventricular function assessed by cardiac magnetic resonance imaging in endurance trained and normally active individuals. Am J Cardiol 106(2):278–283. doi:10.1016/j.amjcard.2010.02.037

    Article  PubMed  Google Scholar 

  • Studinger P, Lenard Z, Kovats Z, Kocsis L, Kollai M (2003) Static and dynamic changes in carotid artery diameter in humans during and after strenuous exercise. J Physiol 550(Pt 2):575–583. doi:10.1113/jphysiol.2003.040147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugawara M, Uchida K, Kondoh Y, Magosaki N, Niki K, Jones CJ, Sugimachi M, Sunagawa K (1997) Aortic blood momentum—the more the better for the ejecting heart in vivo? Cardiovasc Res 33(2):433–446

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47(2):197–206. doi:10.1007/s11517-008-0388-x

    Article  PubMed  Google Scholar 

  • Tomczak CR, Thompson RB, Paterson I, Schulte F, Cheng-Baron J, Haennel RG, Haykowsky MJ (2011) Effect of acute high-intensity interval exercise on postexercise biventricular function in mild heart failure. J Appl Physiol (Bethesda, MD, 1985) 110(2):398–406. doi:10.1152/japplphysiol.01114.2010

    Article  Google Scholar 

  • Torjesen AA, Sigurethsson S, Westenberg JJ, Gotal JD, Bell V, Aspelund T, Launer LJ, de Roos A, Gudnason V, Harris TB, Mitchell GF (2014) Pulse pressure relation to aortic and left ventricular structure in the age, gene/environment susceptibility (ages)-reykjavik study. Hypertension. doi:10.1161/hypertensionaha.114.03870

    Google Scholar 

  • Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, Vanmolkot FH, Staessen JA, Kragten JA, Vredeveld JW, Safar ME, Struijker Boudier HA, Hoeks AP (2001) Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens 19(6):1037–1044

    Article  PubMed  Google Scholar 

  • Webb AJ, Simoni M, Mazzucco S, Kuker W, Schulz U, Rothwell PM (2012) Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke J Cereb Circ 43(10):2631–2636. doi:10.1161/STROKEAHA.112.655837

    Article  Google Scholar 

  • Westerhof N, O’Rourke MF (1995) Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens 13(9):943–952

    Article  CAS  PubMed  Google Scholar 

  • Westerhof N, Sipkema P, van den Bos GC, Elzinga G (1972) Forward and backward waves in the arterial system. Cardiovasc Res 6(6):648–656

    Article  CAS  PubMed  Google Scholar 

  • Willekes C, Hoogland HJ, Keizer HA, Hoeks AP, Reneman RS (1997) Female sex hormones do not influence arterial wall properties during the normal menstrual cycle. Clin Sci (London) 92(5):487–491

    CAS  Google Scholar 

Download references

Conflict of interest

We have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Heffernan.

Additional information

Communicated by Carsten Lundby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babcock, M.C., Lefferts, W.K., Hughes, W.E. et al. Acute effect of high-intensity cycling exercise on carotid artery hemodynamic pulsatility. Eur J Appl Physiol 115, 1037–1045 (2015). https://doi.org/10.1007/s00421-014-3084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3084-6

Keywords

Navigation