Skip to main content
Log in

Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Peripheral arterial distensibility is improved with sprint interval exercise training in young healthy participants (Rakobowchuk et al. in Am J Physiol Regul Integr Comp Physiol 295:R236–R242, 2008). To fully understand the mechanisms contributing to these training effects it is useful to examine the acute responses to sprint interval exercise. Following supine rest, nine healthy males completed either a single sprint interval (Wingate test) or a multiple sprint interval exercise session (4 Wingate tests each separated by 4.5 min). Following exercise, participants recovered for 60 min while central and peripheral arterial distensibility measurements were conducted at discrete time points, using applanation tonometry and ultrasound imaging and continuously, using central and peripheral pulsewave velocity (PWV). Single and multiple sprint interval exercise sessions caused similar changes in all variables. Heart rate was increased throughout recovery (p < 0.05), while central artery PWV was increased until 20 min of recovery (p < 0.05) and lower extremity PWV was decreased until ~45 min (p < 0.05). Distensibility of the superficial femoral artery showed a trend for a reduction at 2 min post-exercise (p = 0.06). These results indicate that extremely high intensity exercise transiently increases central artery stiffness, while metabolite induced vasodilation reduces peripheral stiffness in exercised limbs well into recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98:1985–1990. doi:10.1152/japplphysiol.01095.2004

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Heigenhauser GJ, Gibala MJ (2006) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol 100:2041–2047. doi:10.1152/japplphysiol.01220.2005

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ (2007) Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am J Physiol Regul Integr Comp Physiol 292:R1970–R1976. doi:10.1152/ajpregu.00503.2006

    PubMed  CAS  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160. doi:10.1113/jphysiol.2007.142109

    Article  PubMed  CAS  Google Scholar 

  • Cameron JD, Dart AM (1994) Exercise training increases total systemic arterial compliance in humans. Am J Physiol 266:H693–H701

    PubMed  CAS  Google Scholar 

  • Coppoolse R, Schols AM, Baarends EM, Mostert R, Akkermans MA, Janssen PP, Wouters EF (1999) Interval versus continuous training in patients with severe COPD: a randomized clinical trial. Eur Respir J 14:258–263. doi:10.1034/j.1399-3003.1999.14b04.x

    Article  PubMed  CAS  Google Scholar 

  • Devan AE, Anton MM, Cook JN, Neidre DB, Cortez-Cooper MY, Tanaka H (2005) Acute effects of resistance exercise on arterial compliance. J Appl Physiol 98:2287–2291. doi:10.1152/japplphysiol.00002.2005

    Article  PubMed  Google Scholar 

  • Drillis R, Contini R (1966) Body segment parameters. Office of Vacational Rehabilitation, Department of Health, Education, and Welfare, New York, pp 1163–1103

  • Greer F, McLean C, Graham TE (1998) Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol 85:1502–1508

    PubMed  CAS  Google Scholar 

  • Hayashi K, Sugawara J, Komine H, Maeda S, Yokoi T (2005) Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men. Jpn J Physiol 55:235–239. doi:10.2170/jjphysiol.S2116

    Article  PubMed  Google Scholar 

  • Heffernan KS, Rossow L, Jae SY, Shokunbi HG, Gibson EM, Fernhall B (2006) Effect of single-leg resistance exercise on regional arterial stiffness. Eur J Appl Physiol 98:185–190. doi:10.1007/s00421-006-0259-9

    Article  PubMed  Google Scholar 

  • Heffernan KS, Collier SR, Kelly EE, Jae SY, Fernhall B (2007a) Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int J Sports Med 28:197–203. doi:10.1055/s-2006-924290

    Article  PubMed  CAS  Google Scholar 

  • Heffernan KS, Jae SY, Echols GH, Lepine NR, Fernhall B (2007b) Arterial stiffness and wave reflection following exercise in resistance-trained men. Med Sci Sports Exerc 39:842–848. doi:10.1249/mss.0b013e318031b03c

    Article  PubMed  Google Scholar 

  • Heffernan KS, Jae SY, Edwards DG, Kelly EE, Fernhall B (2007c) Arterial stiffness following repeated Valsalva maneuvers and resistance exercise in young men. Appl Physiol Nutr Metab 32:257–264. doi:10.1139/H06-107

    Article  PubMed  Google Scholar 

  • Hussain ST, Smith RE, Medbak S, Wood RF, Whipp BJ (1996) Haemodynamic and metabolic responses of the lower limb after high intensity exercise in humans. Exp Physiol 81:173–187

    PubMed  CAS  Google Scholar 

  • Kingwell BA, Berry KL, Cameron JD, Jennings GL, Dart AM (1997) Arterial compliance increases after moderate-intensity cycling. Am J Physiol 273:H2186–H2191

    PubMed  CAS  Google Scholar 

  • Lydakis C, Momen A, Blaha C, Gugoff S, Gray K, Herr M, Leuenberger UA, Sinoway LI (2008) Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise. J Hum Hypertens 22:320–328. doi:10.1038/jhh.2008.4

    Article  PubMed  CAS  Google Scholar 

  • MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR (1985) Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790

    PubMed  CAS  Google Scholar 

  • MacDougall JD, McKelvie RS, Moroz DE, Sale DG, McCartney N, Buick F (1992) Factors affecting blood pressure during heavy weightlifting and static contractions. J Appl Physiol 73:1590–1597

    PubMed  CAS  Google Scholar 

  • Munir SM, Jiang B, Guilcher A, Brett S, Redwood S, Marber MS, Chowienczyk P (2008) Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in man. Am J Physiol Heart Circ Physiol 294:H1645–H1650. doi:10.1152/ajpheart.01171.2007

    Article  PubMed  CAS  Google Scholar 

  • Naka KK, Tweddel AC, Parthimos D, Henderson A, Goodfellow J, Frenneaux MP (2003) Arterial distensibility: acute changes following dynamic exercise in normal subjects. Am J Physiol Heart Circ Physiol 284:H970–H978

    PubMed  CAS  Google Scholar 

  • Nichols WW, McDonald DA, O’Rourke MF (2005) McDonald’s blood flow in arteries: theoretical, experimental, and clinical principles. Oxford University Press, London

    Google Scholar 

  • Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, Macdonald MJ (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol 295:R236–R242. doi:10.1152/ajpregu.00069.2008

    PubMed  CAS  Google Scholar 

  • Sagiv M, Ben-Sira D, Goldhammer E (1999) Direct vs. indirect blood pressure measurement at peak anaerobic exercise. Int J Sports Med 20:275–278. doi:10.1055/s-2007-971130

    Article  PubMed  CAS  Google Scholar 

  • Sharman JE, Lim R, Qasem AM, Coombes JS, Burgess MI, Franco J, Garrahy P, Wilkinson IB, Marwick TH (2006) Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension 47:1203–1208. doi:10.1161/01.HYP.0000223013.60612.72

    Article  PubMed  CAS  Google Scholar 

  • Sugawara J, Otsuki T, Tanabe T, Maeda S, Kuno S, Ajisaka R, Matsuda M (2003) The effects of low-intensity single-leg exercise on regional arterial stiffness. Jpn J Physiol 53:239–241. doi:10.2170/jjphysiol.53.239

    Article  PubMed  Google Scholar 

  • Sugawara J, Maeda S, Otsuki T, Tanabe T, Ajisaka R, Matsuda M (2004) Effects of nitric oxide synthase inhibitor on decrease in peripheral arterial stiffness with acute low-intensity aerobic exercise. Am J Physiol Heart Circ Physiol 287:H2666–H2669. doi:10.1152/ajpheart.00077.2004

    Article  PubMed  CAS  Google Scholar 

  • Sugawara J, Otsuki T, Tanabe T, Hayashi K, Maeda S, Matsuda M (2006) Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am J Hypertens 19:1032–1036. doi:10.1016/j.amjhyper.2006.03.008

    Article  PubMed  Google Scholar 

  • Sugawara J, Komine H, Hayashi K, Yoshizawa M, Yokoi T, Otsuki T, Shimojo N, Miyauchi T, Maeda S, Tanaka H (2007) Effect of systemic nitric oxide synthase inhibition on arterial stiffness in humans. Hypertens Res 30:411–415. doi:10.1291/hypres.30.411

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation 102:1270–1275

    PubMed  CAS  Google Scholar 

  • Warburton DE, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, Chan SY (2005) Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol 95:1080–1084. doi:10.1016/j.amjcard.2004.12.063

    Article  PubMed  Google Scholar 

  • Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094. doi:10.1161/CIRCULATIONAHA.106.675041

    Article  PubMed  Google Scholar 

  • Wray DW, Nishiyama SK, Donato AJ, Sander M, Wagner PD, Richardson RS (2007) Endothelin-1-mediated vasoconstriction at rest and during dynamic exercise in healthy humans. Am J Physiol Heart Circ Physiol 293:H2550–H2556. doi:10.1152/ajpheart.00867.2007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge NSERC Canada and the Canadian Institutes for Health Research for their financial support. M. Rakobowchuk is a recipient of a Canadian Institutes for Health Research, Canadian Graduate Scholarship. We also thank Tracy Rerecich for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Jane MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakobowchuk, M., Stuckey, M.I., Millar, P.J. et al. Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males. Eur J Appl Physiol 105, 787–795 (2009). https://doi.org/10.1007/s00421-008-0964-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0964-7

Keywords

Navigation