Skip to main content
Log in

Computer simulation of human breath-hold diving: cardiovascular adjustments

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The world record for a sled-assisted human breath-hold dive has surpassed 200 m. Lung compression during descent draws blood from the peripheral circulation into the thorax causing engorgement of pulmonary vessels that might impose a physiological limitation due to capillary stress failure. A computer model was developed to investigate cardiopulmonary interactions during immersion, apnea, and compression to elucidate hemodynamic responses and estimate vascular stresses in deep human breath-hold diving. The model simulates active and passive cardiovascular adjustments involving blood volumes, flows, and pressures during apnea at diving depths up to 200 m. Redistribution of blood volume from peripheral to central compartments increases with depth. Pulmonary capillary transmural pressures in the model exceed 50 mm Hg at record depth, producing stresses in the range known to cause alveolar capillary damage in animals. Capillary pressures are partially attenuated by blood redistribution to compliant extra-pulmonary vascular compartments. The capillary pressure differential is due mainly to a large drop in alveolar air pressure from outward elastic chest wall recoil. Autonomic diving reflexes are shown to influence systemic blood pressures, but have relatively little effect on pulmonary vascular pressures. Increases in pulmonary capillary stresses are gradual beyond record depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A PC :

surface area of pulmonary capillary sheet

BH:

breath-hold

BP:

blood pressure (aortic)

C i :

vascular compliance compartment i

CO:

cardiac output

D :

depth in metres

F Ci :

contraction–time function of heart chamber i

F DR :

depth factor for diving reflex

F J :

time factor for diving reflex

F Pi :

passive compliance of heart chamber i = RA, RV, LA, LV

F Si :

systolic contractility of heart chamber i = RA, RV, LA, LV

FRC:

functional residual capacity

h i :

depth from neck to centroid of compartment i

H L :

alveolar capillary sheet thickness, midpoint

Ho:

alveolar capillary sheet thickness, relaxed

H X :

alveolar capillary sheet thickness, inlet

H Y :

alveolar capillary sheet thickness, outlet

HR:

heart rate

HR ss :

heart rate, steady state

ITP:

intrathoracic pressure, same as P PL

K AB :

spring constant of abdomen

K W :

spring constant of chest wall

K DI :

spring constant of diaphragm

K L :

compliance constant of lungs

MEP:

maximum expiratory pressure

MIP:

maximum inspiratory pressure

P A :

alveolar pressure

P AB :

pressure in abdominal compartment

P AW :

forcing ventilation pressure on abdominal wall

P DI :

forcing ventilation pressure on diaphragm

P Hi :

hydrostatic pressure on chest, diaphragm, or abdomen

P PERI :

pericardial pressure

P PL :

pleural pressure

P RC :

forcing ventilation pressure on rib cage

P tm :

pulmonary capillary transmural stress P PC − P A

P X :

pulmonary arteriolar pressure

P Y :

pulmonary venule pressure

\({\dot{Q_{i}}}\) :

blood flow between compartments

R i :

ohmic resistance to blood flow for vessel i

R P :

pulmonary vascular resistance

R S :

systemic vascular resistance

RV:

residual volume of lung

SV:

stroke volume

T ES :

systolic ejection time

T E :

time of expiration

T I :

time of inspiration

TLC:

total lung capacity

V AB :

volume of abdominal compartment

V AX :

volume of blood in abdominal compartment

V DI :

volume change due to diaphragm movement

V GV :

volume of great vessels in chest

V H :

volume of heart (blood in four chambers)

V i :

volume of vascular compartment i

V L :

lung volume

V M :

maximum lung volume when fully packed (greater than TLC)

V O :

minimum lung volume (less than RV)

V PC :

blood volume in pulmonary capillary compartment

V R :

minimum chest volume at lung residual volume

V TB :

thoracic blood volume V H  +  V GV

V TX :

total volume of thorax including blood and lung air

V V :

relaxed volume constant of open chest wall

t :

time in seconds

α:

compliance of alveolar capillary sheet

γB :

specific density of blood

γW :

specific density of water

τDR :

time constant for diving reflex

References

  • Agostoni E, D’Angelo E (1991) Pleural liquid pressure. J Appl Physiol 71:393–403

    PubMed  CAS  Google Scholar 

  • Agostoni E, Rahn H (1960) Abdominal and thoracic pressures at different lung volumes. J Appl Physiol 15:1087–1092

    PubMed  CAS  Google Scholar 

  • Agostoni E, Gurtner G, Torri G, Rahn H (1966) Respiratory mechanics during submersion and negative-pressure breathing. J Appl Physiol 21:251–258

    PubMed  CAS  Google Scholar 

  • American Thoracic Society (1991) Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 144:1202–1218

    Google Scholar 

  • Amoore JN, Santamore WP (1989) Model studies of the contribution of ventricular interdependence to the transient changes in ventricular function with respiratory efforts. Cardiovasc Res 23:683–694

    Article  PubMed  CAS  Google Scholar 

  • Andersson J, Schagatay E, Gustafsson P, Örnhagen H (1998) Cardiovascular effects of “buccal pumping” in breath-hold divers. In: Gennser M (ed) 14th Annual Scientific Meeting. European Underwater and Baromedical Society, Stockholm

  • Andersson JP, Liner MH, Runow E, Schagatay EK (2002) Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. J Appl Physiol 93:882–886

    PubMed  Google Scholar 

  • Arborelius M Jr, Ballidin UI, Lilja B, Lundgren CE (1972) Hemodynamic changes in man during immersion with the head above water. Aerosp Med 43:592–598

    PubMed  Google Scholar 

  • Arnold RW (1985) Extremes in human breath hold, facial immersion bradycardia. Undersea Biomed Res 12:183–190

    PubMed  CAS  Google Scholar 

  • Ashton JH, Cassidy SS (1985) Reflex depression of cardiovascular function during lung inflation. J Appl Physiol 58:137–145

    PubMed  CAS  Google Scholar 

  • Baer R, Dahlback GO, Balldin UI (1987) Pulmonary mechanics and atelectasis during immersion in oxygen-breathing subjects. Undersea Biomed Res 14:229–240

    PubMed  CAS  Google Scholar 

  • Bakovic D, Valic Z, Eterovic D, Vukovic I, Obad A, Marinovic-Terzic I, Dujic Z (2003) Spleen volume and blood flow response to repeated breath-hold apneas. J Appl Physiol 95:1460–1466

    PubMed  Google Scholar 

  • Begin R, Erstein M, Sackner MA, Levinson R, Dougherty R, Duncan D (1976) Effects of water immersion to the neck on pulmonary circulation and tissue volume in man. J Appl Physiol 40:293–299

    PubMed  CAS  Google Scholar 

  • Berend N, Thurlbeck WM (1982) Exponential analysis of pressure–volume relationship in excised human lungs. J Appl Physiol 52:838–844

    PubMed  CAS  Google Scholar 

  • Beyar R, Hausknecht MJ, Halperin HR, Yin FC, Weisfeldt ML (1987) Interaction between cardiac chambers and thoracic pressure in intact circulation. Am J Physiol 253:H1240–H1252

    PubMed  CAS  Google Scholar 

  • Birks EK, Mathieu-Costello O, Fu Z, Tyler WS, West JB (1994) Comparative aspects of the strength of pulmonary capillaries in rabbit, dog, and horse. Respir Physiol 97:235–246

    PubMed  CAS  Google Scholar 

  • Bondi KR, Young JM, Bennett RM, Bradley ME (1976) Closing volumes in man immersed to the neck in water. J Appl Physiol 40:736–740

    PubMed  CAS  Google Scholar 

  • Boussuges A, Succo E, Bergmann E, Sainty JM (1995) Intra-alveolar hemorrhage: an uncommon accident in a breath holding diver. Presse Med 24:1169–1170

    PubMed  CAS  Google Scholar 

  • Boussuges A, Pinet C, Thomas P, Bergmann E, Sainty JM, Vervloet D (1999) Haemoptysis after breath-hold diving. Eur Respir J 13:697–699

    PubMed  CAS  Google Scholar 

  • Boynton BR, Barnas GM, Dadmun JT, Fredberg JJ (1991) Mechanical coupling of the rib cage, abdomen, and diaphragm through their area of apposition. J Appl Physiol 70:1235–1244

    PubMed  CAS  Google Scholar 

  • Buono MJ (1983) Effect of central vascular engorgement and immersion on various lung volumes. J Appl Physiol 54:1094–1096

    PubMed  CAS  Google Scholar 

  • Butler PJ, Jones DR (1997) Physiology of diving birds and mammals. Physiol Rev 77:837–899

    PubMed  CAS  Google Scholar 

  • Cassidy SS, Mitchell JH (1981) Effects of positive pressure breathing on right and left ventricular preload and afterload. Fed Proc 40:2178–2181

    PubMed  CAS  Google Scholar 

  • Cassidy SS, Ramanathan M (1984) Dimensional analysis of the left ventricle during PEEP: relative septal and lateral wall displacements. Am J Physiol 246:H792–H805

    PubMed  CAS  Google Scholar 

  • Choukroun ML, Kays C, Varene P (1989) Effects of water temperature on pulmonary volumes in immersed human subjects. Resp Physiol 75:255–265

    CAS  Google Scholar 

  • Chung DC, Niranjan SC, Clark JW Jr, Bidani A, Johnston WE, Zwischenberger JB, Traber DL (1997) A dynamic model of ventricular interaction and pericardial influence. Am J Physiol 272:H2942–H2962

    PubMed  CAS  Google Scholar 

  • Cook CD, Mead J, Orzalesi MM (1964) Static volume–pressure characteristics of the respiratory system during maximal efforts. J Appl Physiol 19:1016–1022

    PubMed  CAS  Google Scholar 

  • Craig AB (1968) Depth limits of breath hold diving (an example of Fennology). Resp Physiol 5:14–22

    Google Scholar 

  • Craig AB (1976) Summary of 58 cases of loss of consciousness during underwater swimming and diving. Med Sci Sports Exerc 8:171–175

    Google Scholar 

  • Craig AB, Ware DE (1967) Effect of immersion in water on vital capacity and residual volume of the lungs. J Appl Physiol 23:423–425

    PubMed  Google Scholar 

  • Dahlback GO, Jonsson E, Liner MH (1978) Influence of hydrostatic compression of the chest and intrathoracic blood pooling on static lung mechanics during head-out immersion. Undersea Biomed Res 5:71–85

    PubMed  CAS  Google Scholar 

  • Data PG (1987) Loss of consciousness during breath hold diving. In: Lundgren CEG, Ferrigno M (eds) The physiology of breath-hold diving. Undersea and Hyperbaric Medical Society, Bethesda

    Google Scholar 

  • Douglas NJ, Drummond GB, Sudlow MF (1981) Breathing at low lung volumes and chest strapping: a comparison of lung mechanics. J Appl Physiol 50:650–657

    PubMed  CAS  Google Scholar 

  • Elsner R, Hanafee WN, Hammond DD (1971) Angiography of the inferior vena cava of the harbour seal during simulated diving. Am J Physiol 220:115–117

    Google Scholar 

  • Erickson BK, Erickson HH, Coffman JR (1990) Pulmonary artery, aortic and oesophageal pressure changes during high-intensity treadmill exercise in the horse: a possible relation to exercise induced pulmonary haemorrhage. Equine Vet J Suppl 9:47–52

    PubMed  Google Scholar 

  • Estenne M, Yernault JC, De Troyer A (1985) Rib cage and diaphragm-abdomen compliance in humans: effects of age and posture. J Appl Physiol 59:1842–1848

    PubMed  CAS  Google Scholar 

  • Ferretti G (2001) Extreme human breath-hold diving. Eur J Appl Physiol 84:254–271

    PubMed  CAS  Google Scholar 

  • Ferrigno M, Hickey DD, Liner MH, Lundgren CEG (1986) Cardiac performance in humans during breath holding. J Appl Physiol 60:1871–1877

    PubMed  CAS  Google Scholar 

  • Ferrigno M, Liner MH, Lundgren CEG (1987) Cardiac performance during breath hold diving in man: an overview. In: Lundgren CEG, Ferrigno M (eds) The physiology of breath-hold diving. Undersea and Hyperbaric Medical Society, Bethesda

    Google Scholar 

  • Ferrigno M, Hickey DD, Liner MH, Lundgren CEG (1987) Simulated breath-hold diving to 20 meters: cardiac performance in humans. J Appl Physiol 62:2160–2167

    PubMed  CAS  Google Scholar 

  • Ferrigno M, Grassi B, Ferretti G, Costa M, Marconi C, Cerretelli P, Lundgren C (1991) Electrocardiogram during deep breath-hold dives by elite divers. Undersea Biomed Res 18:81–91

    PubMed  CAS  Google Scholar 

  • Ferrigno M, Ferretti G, Ellis A, Warkander D, Costa M, Cerretelli P, Lundgren CE (1997) Cardiovascular changes during deep breath-hold dives in a pressure chamber. J Appl Physiol 83:1282–1290

    PubMed  CAS  Google Scholar 

  • Fitz-Clarke JR (2006) Adverse events in competitive breath-hold diving. Undersea Hyperb Med 33:55–62

    PubMed  CAS  Google Scholar 

  • Foster GE, Sheel AW (2005) The human diving response, its function, and its control. Scand J Med Sci Sports 15:3–12

    PubMed  CAS  Google Scholar 

  • Fung YC, Sobin SS (1969) Theory of sheet flow in lung alveoli. J Appl Physiol 26:472–488

    PubMed  CAS  Google Scholar 

  • Fung YC, Sobin SS (1972) Elasticity of the pulmonary alveolar sheet. Circ Res 30:451–469

    PubMed  CAS  Google Scholar 

  • Grimby G, Goldman M, Mead J (1976) Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J Appl Physiol 41:739–751

    PubMed  CAS  Google Scholar 

  • Guyton AC (1986) Textbook of medical physiology, 7th ed. WB Saunders, Philadelphia

    Google Scholar 

  • Heldt T, Shim EB, Kamm RD, Mark RG (2002) Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol 92:1239–1254

    PubMed  Google Scholar 

  • Hess OM, Bhargava V, Ross J Jr, Shabetai R (1983) The role of the pericardium in interactions between the cardiac chambers. Am Heart J 106:1377–1383

    PubMed  CAS  Google Scholar 

  • Hong SK (1987) Breath-hold bradycardia in man: an overview. In: Lundgren CEG, Ferrigno M (eds) The physiology of breath-hold diving. Undersea and Hyperbaric Medical Society, Bethesda

    Google Scholar 

  • Hong SK, Rahn H (1967) The diving women of Korea and Japan. Sci Am 216:34–43

    Article  PubMed  CAS  Google Scholar 

  • Hong SK, Ting EY, Rahn H (1960) Lung volumes at different depths of submersion. J Appl Physiol 15:550–553

    PubMed  CAS  Google Scholar 

  • Hong SK, Cerretelli P, Cruz JC, Rahn H (1969) Mechanics of respiration during submersion in water. J Appl Physiol 27:535–538

    PubMed  CAS  Google Scholar 

  • Horsfield K (1989) Functional morphology of the pulmonary vasculature. In: Chang HK, Paiva M (eds) Respiratory physiology: an analytical approach. Dekker, New York, pp 499–531

    Google Scholar 

  • Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81: 2123–2133

    PubMed  CAS  Google Scholar 

  • Hughes JM, Glazier JB, Maloney JE, West JB (1968) Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 4:58–72

    PubMed  CAS  Google Scholar 

  • Islam MS (1980) Mechanism of controlling residual volume and emptying rate of the lung in young and elderly healthy subjects. Respiration 40:1–8

    PubMed  CAS  Google Scholar 

  • Jarrett AS (1965) Effect of immersion on intrapulmonary pressure. J Appl Physiol 20:1261–1266

    Google Scholar 

  • Kiyan E, Aktas S, Toklu AS (2001) Hemoptysis provoked by voluntary diaphragmatic contractions in breath-hold divers. Chest 120:2098–2100

    PubMed  CAS  Google Scholar 

  • Knudson RJ, Kaltenborn WT (1981) Evaluation of lung elastic recoil by exponential curve analysis. Resp Physiol 46:29–42

    CAS  Google Scholar 

  • Konno K, Mead J (1968) Static volume-pressure characteristics of the rib cage and abdomen. J Appl Physiol 24:544–548

    PubMed  CAS  Google Scholar 

  • Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60:19–32

    PubMed  CAS  Google Scholar 

  • Koubenec HJ, Risch WD, Gauer OH (1978) Effective compliance of the circulation in the upright sitting posture. Pflugers Arch 374:121–124

    PubMed  CAS  Google Scholar 

  • Krishnan A, Linehan JH, Rickab DA, Dawson CA (1986) Cat lung hemodynamics: comparison of experimental results and model predictions. J Appl Physiol 61:2023–2034

    PubMed  CAS  Google Scholar 

  • Lange L, Lange S, Echt M, Gauer OH (1974) Heart volume in relation to body posture and immersion in a thermo-neutral bath. a roentgenometric study. Pflugers Arch 352:219–226

    PubMed  CAS  Google Scholar 

  • Leith DE, Mead J (1967) Mechanisms determining residual volume of the lungs in normal subjects. J Appl Physiol 23:221–227

    PubMed  CAS  Google Scholar 

  • Lentner C (1984) Geigy scientific tables, Vol 3: physical chemistry, composition of blood, hematology, somatometric data. Ciba-Geigy Ltd, Basel, Switzerland

  • Lin YC (1988) Applied physiology of diving. Sports Med 5:41–56

    PubMed  CAS  Google Scholar 

  • Lindholm P, Nyrén S (2005) Studies on inspiratory and expiratory glossopharyngeal breathing in breath-hold divers employing magnetic resonance imaging and spirometry. Eur J Appl Physiol 94:646–651

    PubMed  Google Scholar 

  • Lindholm P, Sundblad P, Linnarsson D (1999) Oxygen-conserving effects of apnea in exercising men. J Appl Physiol 87:2122–2127

    PubMed  CAS  Google Scholar 

  • Liner MH (1994) Cardiovascular and pulmonary responses to breath-hold diving in humans. Acta Physiol Scand Suppl 620:1–32

    PubMed  CAS  Google Scholar 

  • Lopez-Majano V, Data PG, Martignoni R, Lossredo B, Arborelius M Jr (1990) Pulmonary blood flow distribution in erect man in air and during breathhold diving. Aviat Space Environ Med 61:1107–1115

    PubMed  CAS  Google Scholar 

  • Lu K, Clark JW Jr, Ghorbel FH, Ware DL, Bidani A (2001) A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol 281:H2661–H2679

    CAS  Google Scholar 

  • Lundgren CEG, Ferrigno M (1987) The physiology of breath-hold diving. Undersea and Hyperbaric Medical Society, Bethesda

    Google Scholar 

  • Luz PL, Shubin H, Weil MH, Jacobson E, Stein L (1975) Pulmonary edema related to changes in colloid osmotic and pulmonary artery wedge pressure in patients after acute myocardial infarction. Circulation 51:350–357

    Google Scholar 

  • Magosso E, Ursino M (2002) Cardiovascular response to dynamic aerobic exercise: a mathematical model. Med Biol Eng Comput 40:660–674

    PubMed  CAS  Google Scholar 

  • Manohar M, Hutchens E, Coney E (1993) Pulmonary haemodynamics in the exercising horse and their relationship to exercise-induced pulmonary haemorrhage. Br Vet J 149:419–428

    PubMed  CAS  Google Scholar 

  • Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124:382–386

    PubMed  CAS  Google Scholar 

  • Martin CJ, Das S, Young AC (1979) Measurements of the dead space volume. J Appl Physiol 47:319–324

    PubMed  CAS  Google Scholar 

  • Mead J, Milic-Emili J, Turner JM (1963) Factors limiting depth of a maximal inspiration in human subjects. J Appl Physiol 18:295–296

    PubMed  CAS  Google Scholar 

  • Melchior FM, Srinivasan RS, Charles JB (1992) Mathematical modeling of human cardiovascular system for simulation of orthostatic response. Am J Physiol 262:H1920–H1933

    PubMed  CAS  Google Scholar 

  • Milnor WR (1989) Hemodynamics, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Murphy BG, Engel LA (1978) Models of the pressure–volume relationship of the human lung. Resp Physiol 32:183–194

    CAS  Google Scholar 

  • Muth CM, Radermacher P, Pittner A, Steinacker J, Schabana R, Hamich S, Paulat K, Calzia E (2003) Arterial blood gases during diving in elite apnea divers. Int J Sports Med 24:104–107

    PubMed  CAS  Google Scholar 

  • Natori H, Tamaki S, Kira S (1979) Ultrasonographic evaluation of ventilatory effect on inferior vena caval configuration. Am Rev Respir Dis 120:421–427

    PubMed  CAS  Google Scholar 

  • Olszowka AJ, Rahn H (1987) Gas store changes during repetitive breath-hold diving. In: Shiraki K, Yousef MK (eds) Man in stressful environments: diving, hyper and hypobaric physiology. CC Thomas, Springfield, pp 41–56

    Google Scholar 

  • Otis AB, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2:592–607

    PubMed  CAS  Google Scholar 

  • Overgaard K, Friis S, Pedersen RB, Lykkeboe G (2006) Influence of lung volume, glossopharyngeal inhalation and PETO2 and PETCO2 on apnea performance in trained breath-hold divers. Eur J Appl Physiol. 2006 Mar 9

  • Pedersen OF, Thiessen B, Naeraa N, Lyager S, Hilberg C (1984) Factors determining residual volume in normal and asthmatic subjects. Eur J Respir Dis 65:99–105

    PubMed  CAS  Google Scholar 

  • Permutt S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18:924–932

    PubMed  CAS  Google Scholar 

  • Porter MJ, Williamson I, Kerridge D, Maw R (1995) Manometric rhinometry. Clin Otolaryngol 20:303–304

    PubMed  CAS  Google Scholar 

  • Prefaut C, Lupih E, Anthonisen NR (1976) Human lung mechanics during water immersion. J Appl Physiol 40:320–323

    PubMed  CAS  Google Scholar 

  • Primiano FP Jr (1982) Theoretical analysis of chest wall mechanics. J Biomech 15:919–931

    PubMed  Google Scholar 

  • Radermacher P, Muth CM (2002) Apnoetauchen: physiologie und pathophysiologie. Deutsche Zeit Sportmed 53:185–191

    CAS  Google Scholar 

  • Rahn H, Yokoyama T (1965) Physiology of breath-hold diving and the ama of Japan. National Academy of Sciences, National Research Council Publication 1341, Washington

  • Rahn H, Otis AB, Chadwick LE, Fenn WO (1946) The pressure-volume diagram of the thorax and lung. J Appl Physiol 146:161–178

    Google Scholar 

  • Reid MB, Loring SH, Banzett RB, Mead J (1986) Passive mechanics of upright human chest wall during immersion from hips to neck. J Appl Physiol 60:1561–1570

    PubMed  CAS  Google Scholar 

  • Risch WD, Koubenec HJ, Beckmann U, Lange S, Gauer OH (1978) The effect of graded immersion on heart volume, central venous pressure, pulmonary blood distribution, and heart rate in man. Pflugers Arch 374:115–118

    PubMed  CAS  Google Scholar 

  • Rushmer RF (1961) Cardiovascular dynamics. Saunders, Philadelphia

    Google Scholar 

  • Salmon RB, Primiano FP Jr, Saidel GM, Niewoehner DE (1981) Human lung pressure–volume relationships: alveolar collapse and airway closure. J Appl Physiol 51:353–362

    PubMed  CAS  Google Scholar 

  • Schaefer KE, Allison RD, Dougherty JH Jr, Carey CR, Walker R, Yost F, Parker D (1968) Pulmonary and circulatory adjustments determining the limits of depths in breathhold diving. Science 162:1020–1023

    PubMed  CAS  Google Scholar 

  • Schagatay E, van Kampen M, Emanuelsson S, Holm B (2000) Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol 82:161–169

    PubMed  CAS  Google Scholar 

  • Scharf SM (1990) Heart–lung interactions in health and disease. Marcel Dekker Inc, New York

    Google Scholar 

  • Schwartz DR, Maroo A, Malhotra A, Kesselman H (1999) Negative pressure pulmonary hemorrhage. Chest 115:1194–1197

    PubMed  CAS  Google Scholar 

  • Shepherd JT, Abboud FM (1983) Handbook of physiology: the cardiovascular system, peripheral circulation and organ blood flow. Am Physiol Soc, Bethesda

    Google Scholar 

  • Simpson G, Ferns J, Murat S (2003) Pulmonary effects of lung packing by buccal pumping in an elite breath-hold diver. South Pacific Undersea Med Soc J 33:122–126

    Google Scholar 

  • Smith G (2003) The deadly dive. Sports Illustr 98:62–73

    Google Scholar 

  • Starling MR, Walsh RA, Dell’Italia LJ, Mancini GB, Lasher JC, Lancaster JL (1987) The relationship of various measures of end-systole to left ventricular maximum time-varying elastance in man. Circulation 76:32–43

    PubMed  CAS  Google Scholar 

  • Strauss MB, Wright PW (1971) Thoracic squeeze diving casualty. Aerosp Med 42:673–675

    PubMed  CAS  Google Scholar 

  • Suga H (1990) Cardiac mechanics and energetics: from Emax to PVA. Front Med Biol Eng. 2:3–22

    PubMed  CAS  Google Scholar 

  • Suki B, Alencar AM, Tolnai J, Asztalos T, Petak F, Sujeer MK, Patel K, Patel J, Stanley HE, Hantos Z (2000) Size distribution of recruited alveolar volumes in airway reopening. J Appl Physiol. 89:2030–2040

    PubMed  CAS  Google Scholar 

  • Sutton J, Gibson DG (1977) Measurement of postoperative pericardial pressure in man. Br Heart J 39:1–6

    PubMed  CAS  Google Scholar 

  • Ting EY, Hong SK, Rahn H (1960) Cardiovascular responses of man during negative-pressure breathing. J Appl Physiol 15:557–560

    PubMed  CAS  Google Scholar 

  • Ursino M (1998) Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol 275:H1733-H1747

    PubMed  CAS  Google Scholar 

  • Wachspress JD, Clark NR, Untereker WJ, Kraushaar BT, Kurnik PB (1988) Systolic and diastolic performance in normal human subjects as measured by ultrafast computed tomography. Cathet Cardiovasc Diagn 15:277–283

    PubMed  CAS  Google Scholar 

  • Warkander DE, Ferrigno M, Lundgren CEG, McCoy K. (1996) Some physiological parameters in a breathhold dive to 107 msw (351 fsw) in the ocean. Undersea Hyperb Med 23(Suppl):75

    Google Scholar 

  • West JB (2000) Invited review: pulmonary capillary stress failure. J Appl Physiol 89: 2483–2489

    PubMed  CAS  Google Scholar 

  • West JB, Dollery CT (1965) Distribution of blood flow and the pressure-flow relations of the whole lung. J Appl Physiol 20:175–183

    Google Scholar 

  • West JB, Mathieu-Costello O (1999) Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Annu Rev Physiol 61:543–572

    PubMed  CAS  Google Scholar 

  • West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R. (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742

    PubMed  CAS  Google Scholar 

  • Zhuang FY, Fung YC, Yen RT (1983) Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J Appl Physiol 55:1341–1348

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Fitz-Clarke.

Appendix

Appendix

Thoraco-abdominal mechanics

The three compartment pressures in Fig. 1 are derived from static equilibrium of the springs using the compliance curves in Fig. 2 based on standard curves (Agostoni and Rahn 1960). Pleural pressure P PL at the chest centroid h 1 is the sum of external hydrostatic pressure γW h 1, relative to the neck, and transthoracic pressure across the rib cage, dependent on chest compliance K W and total chest volume. Abdominal pressure P AB is the sum of pleural pressure, inspiratory diaphragmatic pressure P DI, and static pressure of the abdominal wall fit to an exponential function of lung volume V L. Alveolar pressure P A relative to pleural pressure depends on the volume-dependent compliance. Compartment volumes are updated by their respective differentials δV at each time step, accounting for blood shifts δV TX and δV AX.

PPL =  γWh1 +  1 / KW ln[(VLVTBVDIVR)/(VVVR)]

Pleural pressure

PAB =  γWh2PDIPPL +  30 exp[−(VL − 0.4)/0.6]

Abdominal pressure

PAPPL − 1/KL ln [(VMVL)/(VMVO)]

Alveolar pressure

δV DI =  (−δP DI +  δP AB − δP RCK W δV L)/(K WK DIK AB)

Diaphragm volume change

δV TX =  δV L + δV DI +  δV H + δV GV

Chest wall volume change

δV AB =  −δV DI +  δV AX

Abdominal volume change

Pulmonary vascular pressures

Pulmonary capillary pressure P PC relative to alveolar pressure is given by the compliance curve in Fig. 7. P X and P Y are the inlet and outlet pressures of the capillary bed, obtained from the analogous voltage-divider circuit according to network resistances shown in Fig. 7. Effective resistances R 2A and R 3A of the pulmonary artery and vein are represented by curvilinear functions simplified from a spreadsheet model of a more complex network (Zhuang et al. 1983) adapted to humans. R 2B and R 3B are the lumped resistances of the capillary sheet (Fung and Sobin 1972). Sheet thickness tapers from H X to H Y , and collapses if P A exceeds P PC at any point along its length.

PPCPA +  (VPCVPCO)/(α APC)

Pulmonary capillary pressure

PPCPA if PPCPA

Capillary sheet compressed

PXPPAR2A/(R2AR2B) (PPAPPC)

Pulmonary capillary pressure (inlet)

PYPPVR3A/(R3AR3B) (PPCPPV)

Pulmonary capillary pressure (outlet)

R2A =  0.10 exp[−(0.5 (PPAPX) − PPL)/20]

Pulmonary capillary resistance (inlet)

R3A =  0.05 exp[−(0.5 (PPVPY) − PPL)/20]

Pulmonary capillary resistance (outlet)

HXHo +  α (PXPA) if HXHo

Capillary sheet thickness (inlet)

HLHo +  α (PPCPA if HXHo

Capillary sheet thickness (central)

HYHo +  α (PYPA) if HXHo

Capillary sheet thickness (outlet)

R2B =  40/(H 3X H 2X HLHXH 2L H 3L )

Capillary sheet resistance (inlet)

R3B =  40/(H 3Y H 2Y HLHYH 2L H 3L )

Capillary sheet resistance (outlet)

RPR2B + R3B

Pulmonary capillary resistance (total)

Heart and vascular pressures

Pericardial pressure P PERI is approximated as a positive exponential function of heart volume above the unstretched volume of 500 ml. Each vascular compartment has a pressure P i equal to its local external pressure (P PL or P AB). Heart chamber pressures are exponential functions of filling volume during diastole, and are increased by half-sine wave pressures proportional to contractility F ci during systole. RV and LV pressures are further adjusted according to septal shift due to ventricular interdependence (Amoore and Santamore 1989) incorporated in the effective septal compliance factors F PRV and F PLV.

VHVRAVRVVLAVLV

Heart volume

VGVVICVPAVPVVAO

Great vessel volume in chest

VTBVHVGV

Thoracic blood volume

PPERI =  1.2 {exp[0.01(VH − 500)] − 1} VH >  500 ml

Pericardial pressure

P i PPLC i (V i Voi)

Intrathoracic vascular pressures

P i PABC i (V i Voi) +  γWh2

Intra-abdominal vascular pressures

P i C i (V i Voi) +  γWh3

Peripheral vascular pressures

PPLVFPLV {exp[0.012 (VLV − 0)] − 1}

Passive diastolic LV pressure

PPRVFPRV {exp[0.008 (VRV − 0)] − 1}

Passive diastolic RV pressure

FPLV =  16.0 [1 +  0.03(VRV − 150)]

Reduction of LV filling due to RV

FPRV =  6.0 [1 +  0.01(VLV −100)]

Reduction of RV filling due to LV

PRAPPPPERIFPRAVRAFSRAVRAFC1(t)

Right atrial pressure

PLAPPPPERIFPLAVLAFSLAVLAFC2(t)

Left atrial pressure

PRVPPPPERIPPRVFSRVVRVFC3(t)

Right ventricular pressure

PLVPPPPERIPPLVFSLVVLVFC4(t)

Left ventricular pressure

Fci(t) =  F maxci sin(π t/TES) Fci (t) ≥  0

Systolic contractility of chamber i

Blood flows

Blood flows are linearly proportional to pressure difference according to Ohm’s law. Volume change is the integral of inflow rate minus outflow rate. Resistance of each peripheral vascular compartment is increased by a depth-dependent factor of F J due to the diving reflex.

\({\dot{{Q}}_{i} = ({P}_{i}-{P}_{i+1})/{R}_{i}}\)

Vascular flow for vessel i = 1, ..., 14

\({\dot{{Q}}_{i} = ({P}_{i}-{P}_{i+1})/({R}_{i} {F}_{\rm J})}\)

Peripheral vascular flows i = 9, 11, 12

\({\delta{V}_{i} = (\dot{{Q}}_{i}-\dot{{Q}}_{i+1}) \delta{t}}\)

Vascular volume change

Diving reflex

The autonomic diving reflex modulates steady-state heart rate HR SS as a function of depth. Actual HR is assumed to approach HR SS with a first order time constant of τDR. Peripheral vascular resistance compartments are multiplied by a vasoconstriction factor F J which changes with the same time constant.

FDR =  1 − exp(−D / 20)

Diving reflex factor, D = depth (m)

HRSS =  70 − 50 F DR

Steady state heart rate, min−1

δHR =  (HRSS − HR) / τDR δt

Change in heart rate

FJSS =  1 +  FDR

Steady state PVR factor

FJFJ +  (FJSSFJ) / τDR δt

Peripheral vascular resistance factor

Compartments

AA

Abdominal aorta

AO

Thoracic aorta

AR

Arterial

AS

Arterial splanchnic

IA

Inferior vena cava abdominal

IC

Inferior vena cava chest

LA

Left atrium

LV

Left ventricle

PA

Pulmonary artery

PC

Pulmonary capillary

PV

Pulmonary vein

RA

Right atrium

RV

Right ventricle

VN

Venous

VS

Venous splanchnic

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitz-Clarke, J.R. Computer simulation of human breath-hold diving: cardiovascular adjustments. Eur J Appl Physiol 100, 207–224 (2007). https://doi.org/10.1007/s00421-007-0421-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0421-z

Keywords

Navigation