Skip to main content
Log in

Polynomial-exponential integral shear deformable theory for static stability and dynamic behaviors of FG-CNT nanobeams

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, we are interested in studying bending, buckling stability, and dynamic behaviors of functionally graded nanobeams reinforced by carbon nanotubes (FG-CNTRC) by a novel shear deformation theory. This model is simple and efficient based on the new polynomial-exponential integral shear deformation theory including the effect of size taking into account the effects of the Winkler–Pasternak elastic foundations. The polynomial-exponential transverse shear function is incorporated to better represent a new displacement field that includes indeterminate integral terms. It is presumed that the material possessions of FG-CNTRC are diverse along the thickness direction employing distinct four distributions of carbon nanotubes (NT-CNTs). The nonlocal elasticity offered by Eringen is used to involve size effects in this approach. The impacts of numerous factors such as the volume fraction of CNTs, the nonlocality, and the impacts of the elastic foundation on the response of the FG-CNTRC beams are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  2. Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites. J. Eng. Mater. Technol. 126(3), 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  3. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos Part A 36, 1555–1561 (2005). https://doi.org/10.1016/j.compositesa.2005.02.006

    Article  Google Scholar 

  4. Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 2394–2401 (2007). https://doi.org/10.1016/j.matdes.2006.09.022

    Article  Google Scholar 

  5. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Compos. Mater. Sci. 39(2), 315–323 (2007). https://doi.org/10.1016/j.commatsci.2006.06.011

    Article  Google Scholar 

  6. Shen, S.H.: Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009). https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  7. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012). https://doi.org/10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

  8. Zidour, M., Hadji, L., Bouazza, M., Tounsi, A., Adda Bedia, E.A.: The mechanical properties of zigzag carbon nanotube using the energy-equivalent model. J. Chem. Mater. Res. 3, 9–14 (2015)

    Google Scholar 

  9. Bouazza, M., Amara, K., Zidour, M., Tounsi, A., Adda-Bedia, E.A.: Thermal effect on buckling of multiwalled carbon nanotubes using different gradient elasticity theories. Nanosci. Nanotechnol. 4(2), 27–33 (2014). https://doi.org/10.1016/j.egypro.2014.06.078

    Article  Google Scholar 

  10. Mehar, K., Panda, S.K., Mahapatra, T.R.: Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure. Int. J. Mech. Sci. 133, 319–329 (2017). https://doi.org/10.1016/j.ijmecsci.2017.08.057

    Article  Google Scholar 

  11. Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A., Tounsi, A.: Sound wave propagation in armchair single walled carbon nanotubes under thermal environment. J. Appl. Phys. 110, 124322 (2011). https://doi.org/10.1063/1.3671636

    Article  Google Scholar 

  12. Zhang, L.W., Huang, D., Liew, K.M.: An element-free IMLS-Ritz method for numerical solution of three-dimensional wave equations. Comput. Methods Appl. Mech. Eng. 297, 116–139 (2015). https://doi.org/10.1016/j.cma.2015.08.018

    Article  MathSciNet  Google Scholar 

  13. Arani, A.G., Jamali, M., Mosayyebi, M., Kolahchi, R.: Analytical modeling of wave propagation in viscoelastic functionally graded carbon nanotubes reinforced piezoelectric microplate under electro-magnetic field. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 231(1), 17–33 (2017). https://doi.org/10.1177/1740349915614046

    Article  Google Scholar 

  14. Amara, K., Youb, O., Bouazza, M., Tounsi, A., Bedia, A.E.A.: Influence of temperature change on column buckling of double walled carbon nanotubes using different theories. Energy Proc. 50, 634–641 (2014). https://doi.org/10.1016/j.egypro.2014.06.078

    Article  Google Scholar 

  15. Barretta, R., Ali Faghidian, S., de Sciarra, M.F., Pinnola, F.P.: Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube Young moduli. Mech. Adv. Mater. Struct. 28(15), 1523–1536 (2021). https://doi.org/10.1080/15376494.2019.1683660

    Article  Google Scholar 

  16. Ebrahimi, F., Hajilak, Z.E., Habibi, M., Safarpour, H.: Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc. Inst. Mech Eng. Part C J. Mech. Eng. Sci. 233, 4590–4605 (2019). https://doi.org/10.1177/0954406219832323

    Article  Google Scholar 

  17. Bouazza, M., Zenkour, A.M.: Hygrothermal environmental effect on free vibration of laminated plates using nth-order shear deformation theory. Waves Random Complex Med. 34(1), 307–323 (2024). https://doi.org/10.1080/17455030.2021.1909173

    Article  MathSciNet  Google Scholar 

  18. Ebrahimi, F., Farazmandnia, N., Kokaba, M.R., et al.: Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng. Comput. 37, 921–936 (2021). https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  19. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos. Struct. 269, 114030 (2021). https://doi.org/10.1016/j.compstruct.2021.114030

    Article  Google Scholar 

  20. Bouazza, M., Becheri, T., Boucheta, A., Benseddiq, N.: Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method. Earthq. Struct. 17(3), 257–270 (2019). https://doi.org/10.12989/EAS.2019.17.3.257

    Article  Google Scholar 

  21. Frikha, A., Zghal, S., Dammak, F.: Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp. Sci. Technol. 78, 438–451 (2018). https://doi.org/10.1016/j.ast.2018.04.048

    Article  Google Scholar 

  22. Zenkour, A.M.: Torsional dynamic response of a carbon nanotube embedded in visco-pasternak’s medium. Math. Model. Anal. 21(6), 852–868 (2016). https://doi.org/10.3846/13926292.2016.1248510

    Article  MathSciNet  Google Scholar 

  23. Bouazza, M., Zenkour, A.M.: Vibration of carbon nanotube-reinforced plates via refinednth-higher-order theory. Arch. Appl. Mech. 90, 1755–1769 (2020). https://doi.org/10.1007/s00419-020-01694-3

    Article  Google Scholar 

  24. Bouazza, M., Zenkour, A.M.: Free vibration characteristics of multilayered composite plates in a hygrothermal environment via the refined hyperbolic theory. Eur. Phys. J. Plus 133, 217 (2018). https://doi.org/10.1140/epjp/i2018-12050-x

    Article  Google Scholar 

  25. Mehar, K., Panda, S.K., Bui, T.Q., Mahapatra, T.R.: Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM. J. Therm. Stresses 40(7), 899–916 (2017). https://doi.org/10.1080/01495739.2017.1318689

    Article  Google Scholar 

  26. Zhang, L.W., Lei, Z.X., Liew, K.M.: Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos. Struct. 122, 172–183 (2015). https://doi.org/10.1016/j.compstruct.2014.11.070

    Article  Google Scholar 

  27. Kahya, V., Turan, M.: Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Compos. B 109, 108–115 (2017). https://doi.org/10.1016/j.compositesb.2016.10.039

    Article  Google Scholar 

  28. Civalek, Ö.: Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method. Int. J. Numer. Methods Eng. 121(5), 990–1019 (2020). https://doi.org/10.1002/nme.6254

    Article  MathSciNet  Google Scholar 

  29. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R., Mahmoudi, M.: A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions. Comput. Math. Appl. 78(6), 2018–2034 (2019). https://doi.org/10.1016/j.camwa.2019.03.042

    Article  MathSciNet  Google Scholar 

  30. Alazwari, M.A., Daikh, A.A., Eltaher, M.A.: Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates. Adv. Nano Res. 12(2), 117–137 (2022). https://doi.org/10.12989/ANR.2022.12.2.117

    Article  Google Scholar 

  31. Abdelrahman, A.A., Shanab, R.A., Esen, I., Eltaher, M.A.: Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory. Steel Compos. Struct. 44(2), 255–270 (2022). https://doi.org/10.12989/SCS.2022.44.2.255

    Article  Google Scholar 

  32. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., Eltaher, M.A.: Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties. Math. 10(4), 583 (2022). https://doi.org/10.3390/math10040583

    Article  Google Scholar 

  33. Eltaher, M.A., Abdelrahman, A.A., Esen, I.: Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load. Eur. Phys. J. Plus 136, 705 (2021). https://doi.org/10.1140/epjp/s13360-021-01682-8

    Article  Google Scholar 

  34. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R., Tornabene, F.: Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment. Appl. Sci. 11(7), 3250 (2021). https://doi.org/10.3390/app11073250

    Article  Google Scholar 

  35. Bouazza, M., Benseddiq, N., Zenkour, A.M.: Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory. J. Therm. Stresses 42(3), 332–340 (2019). https://doi.org/10.1080/01495739.2018.1461042

    Article  Google Scholar 

  36. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 71, 201–208 (2013). https://doi.org/10.1016/j.commatsci.2013.01.028

    Article  Google Scholar 

  37. Bouazza, M., Zenkour, A.M.: Hygro-thermo-mechanical buckling of laminated beam using hyperbolic refined shear deformation theory. Compos. Struct. 252, 112689 (2020). https://doi.org/10.1016/j.compstruct.2020.112689

    Article  Google Scholar 

  38. Tagrara, S.H., Benachour, A., Bouiadjra, M.B., Tounsi, A.: On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams. Steel Compos. Struct. 19(5), 1259–1277 (2015). https://doi.org/10.12989/scs.2015.19.5.1259

    Article  Google Scholar 

  39. Bouazza, M., Antar, K., Amara, K., Benyoucef, S., Bedia, E.A.A.: Influence of temperature on the beams behavior strengthened by bonded composite plates. Geomech. Eng. 18(5), 555–566 (2019). https://doi.org/10.12989/GAE.2019.18.5.555

    Article  Google Scholar 

  40. Amara, K., Bouazza, M., Fouad, B.: Postbuckling analysis of functionally graded beams using nonlinear model. Per. Polytech. Mech. Eng. 60(2), 121–128 (2016). https://doi.org/10.3311/PPme.8854

    Article  Google Scholar 

  41. Safaei, B.: Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. Eur. Phys. J. Plus 136, 646 (2021). https://doi.org/10.1140/epjp/s13360-021-01632-4

    Article  Google Scholar 

  42. Yang, Z., Lu, H., Sahmani, S., Safaei, B.: Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch. Civ. Mech. Eng. 21(3), 114 (2021). https://doi.org/10.1007/s43452-021-00264-w

    Article  Google Scholar 

  43. Li, Q., Xie, B., Sahmani, S., et al.: Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction. J. Braz. Soc. Mech. Sci. Eng. 42, 237 (2020). https://doi.org/10.1007/s40430-020-02317-2

    Article  Google Scholar 

  44. Fattahi, A.M., Safaei, B., Qin, Z., Chu., F.: Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites. Steel Compos. Struct. 38(2), 177–187 (2021). https://doi.org/10.12989/scs.2021.38.2.177

    Article  Google Scholar 

  45. Ellali, M., Bouazza, M., Zenkour, A.M.: Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties. Geomech. Eng. 33(5), 427–437 (2023). https://doi.org/10.12989/gae.2023.33.5.427

    Article  Google Scholar 

  46. Ellali, M., Bouazza, M., Zenkour, A.M.: Hygrothermal vibration of FG nanobeam via nonlocal unknown integral variables secant-tangential shear deformation coupled theory with temperature-dependent material properties. Eur. J. Mech. A/Solids 105, 105243 (2024). https://doi.org/10.1016/j.euromechsol.2024.105243

    Article  MathSciNet  Google Scholar 

  47. Ellali, M., Bouazza, M., Zenkour, A.M.: Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model. Int. J. Comput. Methods 19(9), 2250019 (2022). https://doi.org/10.1142/S0219876222500190

    Article  MathSciNet  Google Scholar 

  48. Feng, J., Safaei, B., Qin, Z., Chu, F.: Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Compos. Sci. Tech. 233, 109925 (2023). https://doi.org/10.1016/j.compscitech.2023.109925

    Article  Google Scholar 

  49. Safaei, B., Onyibo, E.C., Goren, M., Kotrasova, K., Yang, Z., Arman, S., Asmael, M.: Free vibration investigation on rve of proposed honeycomb sandwich beam and material selection optimization. Fac. Univers. Ser. Mech. Eng. 21(1), 31–50 (2023). https://doi.org/10.22190/FUME220806042S

    Article  Google Scholar 

  50. Rao, R., Sahmani, S., Safaei, B.: Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch. Civ. Mech. Eng. 21, 98 (2021). https://doi.org/10.1007/s43452-021-00250-2

    Article  Google Scholar 

  51. Soni, S.K., Thomas, B., Swain, A., Roy, T.: Functionally graded carbon nanotubes reinforced composite structures: an extensive review. Compos. Struct. 299, 116075 (2022). https://doi.org/10.1016/j.compstruct.2022.116075

    Article  Google Scholar 

  52. Yas, M.H., Samadi, N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Vessels Pip. 98, 119–128 (2012). https://doi.org/10.1016/j.ijpvp.2012.07.012

    Article  Google Scholar 

  53. Derbale, A., Bouazza, M., Benseddiq, N.: Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theory. Iran. J. Sci. Technol. Trans. Civ. Eng. 45, 89–98 (2021). https://doi.org/10.1007/s40996-020-00417-6

    Article  Google Scholar 

  54. Ellali, M., Bouazza, M., Amara, K.: Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory. Arch. Appl. Mech. 92, 657–665 (2022). https://doi.org/10.1007/s00419-021-02094-x

    Article  Google Scholar 

  55. Thai, H.-T., Vo, T.P.: Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int. J. Mech. Sci. 62, 57–66 (2012). https://doi.org/10.1016/j.ijmecsci.2012.05.014

    Article  Google Scholar 

  56. Li, X.F., Wang, B.L., Han, J.C.: A higher-order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 80(10), 1197–1212 (2010). https://doi.org/10.1007/s00419-010-0435-6

    Article  Google Scholar 

  57. Van Do, V., Lee, C.: Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method. Acta Mech. 229, 3787–3811 (2018). https://doi.org/10.1007/s00707-018-2190-7

    Article  MathSciNet  Google Scholar 

  58. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    Google Scholar 

  59. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  60. Bouazza, M., Amara, K., Zidour, M., Tounsi, A., Bedia, E.A.: Postbuckling analysis of nanobeams using trigonometric shear deformation theory. Appl. Sci. Rep. 10, 112–121 (2015). https://doi.org/10.15192/PSCP.ASR.2015.10.2.112121

    Article  Google Scholar 

  61. Bouazza, M., Becheri, T., Boucheta, A.: Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler-Pasternak elastic foundation. Int. J. Comput. Meth. Eng. Sci. Mech. 17(5–6), 362–373 (2016). https://doi.org/10.1080/15502287.2016.1231239

    Article  MathSciNet  Google Scholar 

  62. Bouazza, M., Becheri, T., Boucheta, A.: Analysis of structural behaviour of thick composite laminates on an elastic foundation using efficient higher-order theory. In: Shehata, H., Rashed, Y. (eds.) Numerical Analysis of Nonlinear Coupled Problems. GeoMEast 2017. Sustainable Civil Infrastructures. Springer, Cham (2018)

    Google Scholar 

  63. Pham, Q.-H., Nhan, H.T., Tran, V.K., Zenkour, A.M.: Hygro-thermo-mechanical vibration analysis of functionally graded porous curved nanobeams resting on elastic foundations. Waves Random Complex Med. (2023). https://doi.org/10.1080/17455030.2023.2177500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Software and draft preparation, ME, Methodology, supervision and writing-original, MB; writing—review and editing, AMZ; visualization and investigation, NB. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mokhtar Bouazza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellali, M., Bouazza, M., Zenkour, A.M. et al. Polynomial-exponential integral shear deformable theory for static stability and dynamic behaviors of FG-CNT nanobeams. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02582-w

Keywords

Navigation