Skip to main content
Log in

An analytical method for vibration analysis of multi-span Timoshenko beams under arbitrary boundary conditions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An analytical method for analyzing free vibration of multi-span Timoshenko beams under arbitrary boundary conditions is proposed in this paper. Based on the theoretical model of the Timoshenko beam, linear displacement springs and rotational springs are introduced to simulate the boundary and support forces of multi-span Timoshenko beams. By modifying the springs’ stiffness, different boundary conditions and inter-span coupling conditions can be simulated. To develop the vibration calculation models based on the energy method, the improved Fourier cosine series with four sine series are introduced to represent the displacement functions in order to eliminate the discontinuities or jumps in the solution processes. With the Rayleigh–Ritz method, the Lagrange equations of structures are solved to obtain free vibration characteristics. Using a three-span beam and a four-span beam as examples, this method is applied to calculate the natural frequencies of structures with circular and rectangular cross sections. The correctness and accuracy of the method are verified by comparing the solutions with the results of existing literature. On this basis, the influences of boundary conditions, span ratio and span number on the vibration characteristics of multi-span Timoshenko beams are discussed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33(2), 335–340 (1964)

    Article  Google Scholar 

  2. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  ADS  Google Scholar 

  3. Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. J. Mech. Des. 102(4), 793–803 (1980)

    Google Scholar 

  4. Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E Low Dimens. Syst. Nanostruct. 41(9), 1651–1655 (2009)

    Article  ADS  Google Scholar 

  5. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)

    Article  CAS  Google Scholar 

  6. Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68(1), 87–92 (2001)

    Article  ADS  Google Scholar 

  7. Lee, S.J., Park, K.S.: Vibrations of Timoshenko beams with isogeometric approach. Appl. Math. Model. 37(22), 9174–9190 (2013)

    Article  MathSciNet  Google Scholar 

  8. Lee, S.S., Koo, J.S., Choi, J.M.: Variational formulation for Timoshenko beam element by separation of deformation mode. Commun. Numer. Methods Eng. 10(8), 599–610 (1994)

    Article  Google Scholar 

  9. Civalek, O., Kiracioglu, O.: Free vibration analysis of Timoshenko beams by DSC method. Int. J. Numer. Method Biomed. Eng. 26(12), 1890–1898 (2010)

    Article  Google Scholar 

  10. Lou, M.L., Duan, Q.H., Chen, G.: Modal perturbation method for the dynamic characteristics of Timoshenko beams. Shock Vib. 12(6), 425–434 (2005)

    Article  Google Scholar 

  11. Zhou, D., Cheung, Y.K.: Vibrations of tapered Timoshenko beams in terms of static Timoshenko beam functions. J. Appl. Mech. 68(4), 596–602 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Liao, M., Zhong, H.: Nonlinear vibration analysis of tapered Timoshenko beams. Chaos Solitons Fractals 36(5), 1267–1272 (2008)

    Article  ADS  Google Scholar 

  13. Xiang, H.J., Yang, J.: Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos. B Eng. 39(2), 292–303 (2008)

    Article  Google Scholar 

  14. Shafiei, N., Hamisi, M., Ghadiri, M.: Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment. Solid Mech. 12(1), 16–32 (2020)

    Google Scholar 

  15. Civalek, Ö., Akbaş, ŞD., Akgöz, B., Dastjerdi, S.: Forced vibration analysis of composite beams reinforced by carbon nanotubes. Nanomaterials 11(3), 571 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Demir, Ç., Civalek, Ö.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  Google Scholar 

  17. Numanoğlu, H.M., Ersoy, H., Akgöz, B., Civalek, Ö.: A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. 45(5), 2592–2614 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  18. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded tapered microbeams via Rayleigh–Ritz method. J. Math. 10(23), 4429 (2022)

    Article  Google Scholar 

  19. Li, X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 318(4–5), 1210–1229 (2008)

    Article  ADS  Google Scholar 

  20. Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. B Eng. 42(4), 801–808 (2011)

    Article  Google Scholar 

  21. Esen, I.: Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int. J. Mech. Sci. 153–154, 21–35 (2019)

    Article  Google Scholar 

  22. Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. B Eng. 51, 175–184 (2013)

    Article  Google Scholar 

  23. Nikrad, S.F., Kanellopoulos, A., Bodaghi, M., Chen, Z.T., Pourasghar, A.: Large deformation behavior of functionally graded porous curved beams in thermal environment. Arch. Appl. Mech. 91, 2255–2278 (2021)

    Article  ADS  Google Scholar 

  24. Bourada, M., Kaci, A., Houari, M.S.A., Tounsi, A.: A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18(2), 409–423 (2015)

    Article  Google Scholar 

  25. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin Walled Struct. 107, 39–48 (2016)

    Article  Google Scholar 

  26. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. J. Sound Vib. 212(3), 455–467 (1998)

    Article  ADS  Google Scholar 

  28. EI-Sayed, T.A., EI Mongy, H.H.: A new numeric-symbolic procedure for vibrational literation method with application to the free vibration of generalized multi-span Timoshenko beam. J. Vib. Control 28(7–8), 799–811 (2022)

    Article  MathSciNet  Google Scholar 

  29. Fakhreddine, H., Adri, A., Rifai, S., Benamar, R.: A multimode approach to geometrically non-linear forced vibrations of Euler–Bernoulli multispan beams. J. Vib. Eng. Technol. 8(2), 319–326 (2020)

    Article  Google Scholar 

  30. Dugush, Y.A., Eisenberger, M.: Vibrations of non-uniform continuous beams under moving loads. J. Sound Vib. 254(5), 911–926 (2002)

    Article  ADS  Google Scholar 

  31. Abu-Hilal, M.: Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. J. Sound Vib. 267(2), 191–207 (2003)

    Article  ADS  Google Scholar 

  32. Luo, J., Zhu, S., Zhai, W.: Exact closed-form solution for free vibration of Euler–Bernoulli and Timoshenko beams with intermediate elastic supports. Int. J. Mech. Sci. 213, 106842 (2022)

    Article  Google Scholar 

  33. Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J., Shao, Y.B.: Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound Vib. 464(1), 115001 (2020)

    Article  Google Scholar 

  34. Ghannadiasl, A., Ajirlou, S.K.: Forced vibration of multi-span cracked Euler–Bernoulli beams using dynamic Green function formulation. Appl. Acoust. 148, 484–494 (2019)

    Article  Google Scholar 

  35. Zhu, L., Elishakoff, I., Lin, Y.K.: Free and forced vibrations of periodic multispan beams. Shock Vib. 1(3), 217–232 (1994)

    Article  Google Scholar 

  36. Lin, H.P., Chang, S.C.: Free vibration analysis of multi-span beams with intermediate flexible constraints. J. Sound Vib. 281(1–2), 155–169 (2005)

    Article  ADS  Google Scholar 

  37. Jin, Y., Yang, R., Liu, H., Xu, H., Chen, H.: A unified solution for the vibration analysis of lattice sandwich beams with general elastic supports. Appl. Sci. 11(19), 9141 (2021)

    Article  CAS  Google Scholar 

  38. Jin, Y., Luo, X., Liu, H., Qiu, B., Chi, H.: An accurate solution method for vibration analysis of multi-span lattice sandwich beams under arbitrary boundary conditions. Thin Walled Struct. 175, 109214 (2022)

    Article  Google Scholar 

  39. Lin, H.Y., Tsai, Y.C.: Free vibration analysis of a uniform multi-span beam carrying multiple spring–mass systems. J. Sound Vib. 302(3), 442–456 (2007)

    Article  ADS  Google Scholar 

  40. Yesilce, Y., Demirdag, O.: Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring–mass systems. Int. J. Mech. Sci. 50(6), 995–1003 (2008)

    Article  Google Scholar 

  41. Yesilce, Y.: Effect of axial force on the free vibration of Reddy–Bickford multi-span beam carrying multiple spring–mass systems. J. Vib. Control 16(1), 11–32 (2010)

    Article  MathSciNet  Google Scholar 

  42. Yesilce, Y.: Free vibrations of a Reddy–Bickford multi-span beam carrying multiple spring–mass systems. Shock Vib. 18(5), 709–726 (2011)

    Article  MathSciNet  Google Scholar 

  43. Yesilce, Y.: Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias. Struct. Eng. Mech. 53(3), 537–573 (2015)

    Article  Google Scholar 

  44. Borji, A., Movahedian, B., Boroomand, B.: Implementation of time-weighted residual method for simulation of flexural waves in multi-span Timoshenko beams subjected to various types of external loads: from stationary loads to accelerating moving masses. Arch. Appl. Mech. 92(4), 1247–1271 (2022)

    Article  ADS  Google Scholar 

  45. Liu, L., Yang, W., Chai, Y., Zhai, G.: Vibration and thermal bucking analyses of multi-span composite lattice sandwich beams. Arch. Appl. Mech. 91(6), 2601–2616 (2021)

    Article  ADS  Google Scholar 

  46. Gao, C., Pang, F., Li, H., Wang, H., Cui, J., Huang, J.: Free and forced vibration characteristics analysis of a multispan Timoshenko beam based on the Ritz method. Shock Vib. 2021, 1–18 (2021)

    Google Scholar 

  47. Xu, S., Wang, X.: Free vibration analyses of Timoshenko beams with free edges by using the discrete singular convolution. Adv. Eng. Softw. 42(10), 797–806 (2011)

    Article  Google Scholar 

  48. Shi, D., Wang, Q., Shi, X., Pang, F.: An accurate solution method for the vibration analysis of Timoshenko beams with general elastic supports. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(13), 2327–2340 (2015)

    Article  Google Scholar 

  49. Wang, R.T.: Vibration of multi-span Timoshenko beams to a moving force. J. Sound Vib. 207(5), 731–742 (1997)

    Article  ADS  Google Scholar 

  50. Chen, G., Zeng, X., Liu, X., Rui, X.: Transfer matrix method for the free and forced vibration analyses of multi-step Timoshenko beams coupled with rigid bodies on springs. Appl. Math. Model. 87, 152–170 (2020)

    Article  MathSciNet  Google Scholar 

  51. Copetti, R.D., Claeyssen, J.R., Tolfo, D.D.R., Pavlack, B.S.: The fundamental modal response of elastically connected parallel Timoshenko beams. J. Sound Vib. 530, 116920 (2022)

    Article  Google Scholar 

  52. Zhao, Z., Wen, S., Li, F., Zhang, C.: Free vibration analysis of multi-span Timoshenko beams using the assumed mode method. Arch. Appl. Mech. 88(7), 1213–1228 (2018)

    Article  ADS  Google Scholar 

  53. Bao, S.Y., Zhou, J.: Vibrational characteristics of a multi-span beam with elastic transverse supports of different shaped sections. Chin. J. Ship Res. 15(1), 162–169 (2020)

    Google Scholar 

  54. Li, W.L.: Free vibrations of beams with general boundary conditions. J. Sound Vib. 237(4), 709–725 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Research and Development program of Shandong Province, China (2022CXGC020509), Fundamental Research Funds for the Central Universities (3072022QBZ2701), Strategic Rocket Innovation Fund (ZH2022009), the program of Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base (YTDNY20220425-01).

Author information

Authors and Affiliations

Authors

Contributions

YJ proposed the research concept, managed the research project, obtained research funding, and reviewed and revised the paper. YJ and YL worked on the program together. YL analyzed and organized the resulting data, visualized the results, and wrote the first draft of the paper. DY and FZ verified the design and results. XL and PZ participated in the relevant part of the background research. All authors have reviewed the manuscript.

Corresponding author

Correspondence to Yeqing Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to the above theoretical derivation process, if the span number is N, and the highest number of terms in the improved Fourier series is M, then the dimension unknown coefficient vector A in Eq. (19) is [2(M + 5) × N] × 1, the specific formula is expressed as follows:

$${\mathbf{A}} = \left\{ {A_{i,0} ,A_{i,1} , \cdots ,A_{i,m} , \cdots ,A_{i,M} ,A_{i,1}^{a} ,A_{i,2}^{a} ,A_{i,3}^{a} ,A_{i,4}^{a} ,B_{i,0} ,B_{i,1} , \cdots ,B_{i,m} , \cdots ,B_{i,M} ,B_{i,1}^{a} ,B_{i,2}^{a} ,B_{i,3}^{a} ,B_{i,4}^{a} } \right\}$$
(20)

Similarly, for an N-span Timoshenko beam, its overall mass matrix \({\mathbf{M}}\) and stiffness matrix \({\mathbf{K}}\) are both [2(M + 5) × N] × [2(M + 5) × N] order matrices. Thus, the specific formulas of the overall mass matrix \({\mathbf{M}}\) and stiffness matrix \({\mathbf{K}}\) in Eq. (19) are expressed as follows:

$${\mathbf{K}} = {\mathbf{K}}_{P} + {\mathbf{K}}_{S} + {\mathbf{K}}_{C}$$
(21)

where \({\mathbf{K}}_{P}\), \({\mathbf{K}}_{S}\) and \({\mathbf{K}}_{C}\) are all [2(M + 5) × N] × [2(M + 5) × N] order matrices.

$${\mathbf{K}}_{P} = \left[ {\begin{array}{*{20}l} {{\mathbf{K}}_{1,P} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {{\mathbf{K}}_{i,P} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {{\mathbf{K}}_{N,P} } \hfill \\ \end{array} } \right]_{N \times N}$$
(22)

where \({\mathbf{K}}_{i,P}\) is 2(M + 5) × 2(M + 5) order matrices, its specific formula is expressed as follows:

$${\mathbf{K}}_{i,P} = \left[ {\begin{array}{*{20}l} {K_{11}^{i,P} } \hfill & {K_{12}^{i,P} } \hfill & {K_{13}^{i,P} } \hfill & {K_{14}^{i,P} } \hfill \\ {K_{21}^{i,P} } \hfill & {K_{22}^{i,P} } \hfill & {K_{23}^{i,P} } \hfill & {K_{24}^{i,P} } \hfill \\ {K_{31}^{i,P} } \hfill & {K_{32}^{i,P} } \hfill & {K_{33}^{i,P} } \hfill & {K_{34}^{i,P} } \hfill \\ {K_{41}^{i,P} } \hfill & {K_{42}^{i,P} } \hfill & {K_{43}^{i,P} } \hfill & {K_{44}^{i,P} } \hfill \\ \end{array} } \right]$$
(23)
$$K_{11}^{i,P} = GA\beta \lambda_{i,r} \lambda_{i,k} \int_{0}^{{l_{i} }} {\sin \lambda_{i,r} x_{i} \sin \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(24)
$$K_{22}^{i,P} = GA\beta \lambda_{i,s} \lambda_{i,j} \int_{0}^{{l_{i} }} {\cos \lambda_{i,s} x_{i} \cos \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(25)
$$\begin{aligned} K_{33}^{i,P} & = EI\lambda_{i,r} \lambda_{i,k} \int_{0}^{{l_{i} }} {\sin \lambda_{i,r} x_{i} \sin \lambda_{i,k} x_{i} {\text{d}}x_{i} } \\ & \quad + GA\beta \int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} } \\ \end{aligned}$$
(26)
$$\begin{aligned} K_{44}^{i,P} & = EI\lambda_{i,s} \lambda_{i,j} \int_{0}^{{l_{i} }} {\cos \lambda_{i,s} x_{i} \cos \lambda_{i,j} x_{i} {\text{d}}x_{i} } \\ & \quad + GA\beta \int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} } \\ \end{aligned}$$
(27)
$$K_{12}^{i,P} = GA\beta \left( { - \lambda_{i,r} } \right)\lambda_{i,j} \int_{0}^{{l_{i} }} {\sin \lambda_{i,r} x_{i} \cos \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(28)
$$K_{13}^{i,P} = GA\beta \lambda_{i,r} \int_{0}^{{l_{i} }} {\sin \lambda_{i,r} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(29)
$$K_{14}^{i,P} = GA\beta \lambda_{i,r} \int_{0}^{{l_{i} }} {\sin \lambda_{i,r} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(30)
$$K_{21}^{i,P} = GA\beta \lambda_{i,s} \left( { - \lambda_{i,k} } \right)\int_{0}^{{l_{i} }} {\cos \lambda_{i,s} x_{i} \sin \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(31)
$$K_{23}^{i,P} = GA\beta \left( { - \lambda_{i,s} } \right)\int_{0}^{{l_{i} }} {\cos \lambda_{i,s} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(32)
$$K_{24}^{i,P} = GA\beta \left( { - \lambda_{i,s} } \right)\int_{0}^{{l_{i} }} {\cos \lambda_{i,s} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(33)
$$K_{31}^{i,P} = GA\beta \lambda_{i,k} \int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \sin \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(34)
$$K_{32}^{i,P} = GA\beta \left( { - \lambda_{i,j} } \right)\int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \cos \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(35)
$$\begin{aligned} K_{34}^{i,P} & = EI\left( { - \lambda_{i,r} } \right)\lambda_{i,j} \int_{0}^{{l_{i} }} {\sin \lambda_{i,r} x_{i} \cos \lambda_{i,j} x_{i} {\text{d}}x_{i} } \\ & \quad + GA\beta \int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} } \\ \end{aligned}$$
(36)
$$K_{41}^{i,P} = GA\beta \lambda_{i,k} \int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \sin \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(37)
$$K_{42}^{i,P} = GA\beta \left( { - \lambda_{i,j} } \right)\int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \cos \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(38)
$$\begin{aligned} K_{43}^{i,P} & = EI\lambda_{i,s} \left( { - \lambda_{i,k} } \right)\int_{0}^{{l_{i} }} {\cos \lambda_{i,s} x_{i} \sin \lambda_{i,k} x_{i} {\text{d}}x_{i} } \\ & \quad + GA\beta \int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} } \\ \end{aligned}$$
(39)
$${\mathbf{K}}_{S} = \left[ {\begin{array}{*{20}l} {{\mathbf{K}}_{1,S} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {{\mathbf{K}}_{i,S} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {{\mathbf{K}}_{N,S} } \hfill \\ \end{array} } \right]$$
(40)

where \({\mathbf{K}}_{i,S}\) is 2(M + 5) × 2(M + 5) order matrices, its specific formula is expressed as follows:

$${\mathbf{K}}_{i,S} = \left[ {\begin{array}{*{20}l} {K_{11}^{i,S} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {K_{22}^{i,S} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {K_{33}^{i,S} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(41)
$$K_{11}^{i,S} = B_{i} \left( {\tilde{k}_{i,0} + \left( { - 1} \right)^{r + k} \tilde{k}_{i,l} } \right)$$
(42)
$$K_{22}^{i,S} = B_{i} \left( {\lambda_{i,s} \lambda_{i,j} \tilde{K}_{i,0} + \left( { - 1} \right)^{s + j} \lambda_{i,s} \lambda_{i,j} \tilde{K}_{i,l} } \right)$$
(43)
$$K_{33}^{i,S} = B_{i} \left( {\tilde{K}_{i,0} + \left( { - 1} \right)^{r + k} \tilde{K}_{i,l} } \right)$$
(44)
$${\mathbf{\rm K}}_{C} = \left[ {\begin{array}{*{20}l} \ddots \hfill & {{\mathbf{K}}_{i,C}^{11} } \hfill & {{\mathbf{K}}_{i,C}^{12} } \hfill \\ {{\mathbf{K}}_{i,C}^{21} } \hfill & {{\mathbf{K}}_{i,C}^{22} + {\mathbf{K}}_{i + 1,C}^{11} } \hfill & {{\mathbf{K}}_{i + 1,C}^{12} } \hfill \\ {{\mathbf{K}}_{i + 1,C}^{21} } \hfill & {{\mathbf{K}}_{i + 1,C}^{22} } \hfill & \ddots \hfill \\ \end{array} } \right]_{N \times N}$$
(45)

where \({\mathbf{K}}_{i,C}^{11}\), \({\mathbf{K}}_{i,C}^{12}\), \({\mathbf{K}}_{i,C}^{21}\), \({\mathbf{K}}_{i,C}^{22}\) are all 2(M + 5) × 2(M + 5) order matrices, its specific formula are expressed as follows:

$${\mathbf{K}}_{i,C}^{11} = \left[ {\begin{array}{*{20}l} {K_{11,11}^{i,C} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {K_{11,22}^{i,C} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {K_{11,33}^{i,C} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(46)
$$K_{11,11}^{i,C} = B_{i} \left( { - 1} \right)^{r + k} k_{i,i + 1}$$
(47)
$$K_{11,22}^{i,C} = B_{i} \lambda_{i,s} \lambda_{i,j} \left( { - 1} \right)^{s + j} K_{i,i + 1}$$
(48)
$$K_{11,33}^{i,C} = B_{i} \left( { - 1} \right)^{r + k} K_{i,i + 1}$$
(49)
$${\mathbf{K}}_{i,C}^{12} = \left[ {\begin{array}{*{20}l} {K_{12,11}^{i,C} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {K_{12,22}^{i,C} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {K_{12,33}^{i,C} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(50)
$$K_{12,11}^{i,C} = - B_{i} \left( { - 1} \right)^{s} k_{i,i + 1}$$
(51)
$$K_{12,22}^{i,C} = - B_{i} \lambda_{i,s} \lambda_{i,j} \left( { - 1} \right)^{s} K_{i,i + 1}$$
(52)
$$K_{12,33}^{i,C} = - B_{i} \left( { - 1} \right)^{s} K_{i,i + 1} \left( {A.34} \right)$$
(53)
$${\mathbf{K}}_{i,C}^{22} = \left[ {\begin{array}{*{20}l} {K_{22,11}^{i,C} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {K_{22,22}^{i,C} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {K_{22,33}^{i,C} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(54)
$$K_{22,11}^{i,C} = B_{i} k_{i,i + 1}$$
(55)
$$K_{22,22}^{i,C} = B_{i} \lambda_{i,s} \lambda_{i,j} K_{i,i + 1}$$
(56)
$$K_{22,33}^{i,C} = B_{i} K_{i,i + 1}$$
(57)
$${\mathbf{K}}_{i,C}^{21} = \left( {{\mathbf{K}}_{i,C}^{12} } \right)^{T}$$
(58)
$${\mathbf{M}} = \left[ {\begin{array}{*{20}l} {{\mathbf{M}}_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & \ddots \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {{\mathbf{M}}_{i} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {{\mathbf{M}}_{N} } \hfill \\ \end{array} } \right]$$
(59)
$${\mathbf{M}}_{i} = \left[ {\begin{array}{*{20}l} {M_{11}^{i} } \hfill & {M_{12}^{i} } \hfill & {M_{13}^{i} } \hfill & {M_{14}^{i} } \hfill \\ {M_{21}^{i} } \hfill & {M_{22}^{i} } \hfill & {M_{23}^{i} } \hfill & {M_{24}^{i} } \hfill \\ {M_{31}^{i} } \hfill & {M_{32}^{i} } \hfill & {M_{33}^{i} } \hfill & {M_{34}^{i} } \hfill \\ {M_{41}^{i} } \hfill & {M_{42}^{i} } \hfill & {M_{43}^{i} } \hfill & {M_{44}^{i} } \hfill \\ \end{array} } \right]$$
(60)
$$M_{11}^{i} = \rho A\int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(61)
$$M_{22}^{i} = \rho A\int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(62)
$$M_{33}^{i} = \rho I\int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(63)
$$M_{22}^{i} = \rho I\int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(64)
$$M_{12}^{i} = \rho A\int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(65)
$$M_{21}^{i} = \rho A\int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(66)
$$M_{34}^{i} = \rho I\int_{0}^{{l_{i} }} {\cos \lambda_{i,r} x_{i} \sin \lambda_{i,j} x_{i} {\text{d}}x_{i} }$$
(67)
$$M_{43}^{i} = \rho I\int_{0}^{{l_{i} }} {\sin \lambda_{i,s} x_{i} \cos \lambda_{i,k} x_{i} {\text{d}}x_{i} }$$
(68)
$$M_{13}^{i} = M_{14}^{i} = M_{23}^{i} = M_{24}^{i} = M_{31}^{i} = M_{32}^{i} = M_{41}^{i} = M_{42}^{i} = 0$$
(69)

where \(r,k = 1,2, \ldots ,M\); \(s,j = 1,2,3,4\); \(i = 1,2, \ldots ,N\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Lu, Y., Yang, D. et al. An analytical method for vibration analysis of multi-span Timoshenko beams under arbitrary boundary conditions. Arch Appl Mech 94, 529–553 (2024). https://doi.org/10.1007/s00419-023-02534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02534-w

Keywords

Navigation