Skip to main content
Log in

Influence of thrombosis, stenosis and catheter on rheological characteristics of blood: a systematic review

  • Review
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Understanding potential disease causation due to stenosis and thrombosis and its treatment by utilising catheters and magnetic field has gained increasing attention from experts worldwide. Endothelial injury or plaque rupture can trigger thrombosis, which can cut off the supply of blood to the heart or brain, causing stroke or a myocardial infarction. In the regions of stenosis, narrowing of lumen of arteries and high shear rate generate conditions that increase platelet build-up and blockage. Treatment like catheters and magnetic field are famously being implemented in modern medicine as a way of removing blood clots inside a constricted artery in light to improve the blood circulation inside a human body. This article reviews the impact of the simultaneous presence of stenosis and thrombosis on rheological properties of blood flow and the effects of using catheter in clearing the obstructions in the inner wall of blood vessel. We also introduce significant recent development on blood flow modelling relating to the subject matter. A sample mathematical model is considered from the literature to explain the influence of aforesaid arterial constrictions and clinical therapy for future directions in the medical field. Based on the collected literature, we note that the angioplasty catheter greatly increases blood flow as compared to infusion and guidewire catheters because it uses a balloon-tipped catheter to remove occlusions in the artery lumen. This comprehensive review and the proposed mathematical model together with the clinical data may offer directions for further studies, especially on one specific type of catheter for balloon angioplasty as the best treatment for clearing the occlusions in the diseased artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Adapted from Ref. [105]

Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery diseases

LDL:

Low-density lipoproteins

SMCs:

Smooth muscle cells

AP:

Activated platelets

AF:

Atrial fibrillation

TF:

Tissue factor

PLS:

Plasminogens

RBCs:

Red blood cells

WBCs:

White blood cells

ADP:

Adenine di-phosphate

GpIb:

Glycoprotein Ib

LMWH:

Low molecular weight heparin

VADs:

Ventricular assist devices

DVT:

Deep venous thrombosis

PE:

Pulmonary thromboembolism

ATIII:

Antithrombin III

Rx:

Rapid exchange

OTW:

Over-the-wire

POBA:

Plain old balloon angioplasty

References

  1. Thomas, B., Sumam, K.S.: Blood flow in human arterial system—a review. Procedia Technol. 24, 339–346 (2016). https://doi.org/10.1016/j.protcy.2016.05.045

    Article  Google Scholar 

  2. Schlichting, H., Gersten, K.: Boundary-layer theory. McGraw-Hill Book Company, New York (1968)

    MATH  Google Scholar 

  3. Biswas, D.: Blood flow models: a comparative study. Mittal Publications, New Delhi (2000)

    Google Scholar 

  4. Ling, S.C., Atabek, H.B.: A nonlinear analysis of pulsatile flow in arteries. J. Fluid Mech. 55, 493–511 (1972)

    Article  MATH  Google Scholar 

  5. Korakianitis, T., Shi, Y.: Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39, 1964–1982 (2006). https://doi.org/10.1016/j.jbiomech.2005.06.016

    Article  Google Scholar 

  6. Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434 (1997). https://doi.org/10.1146/annurev.fluid.29.1.399

    Article  MathSciNet  Google Scholar 

  7. Stein, P.D., Sabbah, H.N.: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39, 58–65 (1976). https://doi.org/10.1161/01.RES.39.1.58

    Article  Google Scholar 

  8. Chandran, K.B., Rittgers, S.E., Yoganathan, A.P.: The Human Circulation. Biofluid Mechanics. CRC Press, Hoboken (2012)

    Book  Google Scholar 

  9. Mendis, S., Puska, P., Norrving, B., Organization, W.H., Federation, W.H., Organization, W.S.: Global atlas on cardiovascular disease prevention and control/edited by: Shanthi Mendis ... [et al.] https://apps.who.int/iris/handle/10665/44701 (2011)

  10. Calvet, D., Touzé, E., Varenne, O., Sablayrolles, J.-L., Weber, S., Mas, J.-L.: Prevalence of asymptomatic coronary artery disease in ischemic stroke patients. Circulation 121, 1623–1629 (2010). https://doi.org/10.1161/CIRCULATIONAHA.109.906958

    Article  Google Scholar 

  11. Ralapanawa, U., Sivakanesan, R.: Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review. J. Epidemiol. Glob. Health. 11, 169–177 (2021). https://doi.org/10.2991/jegh.k.201217.001

    Article  Google Scholar 

  12. Badimon, L., Padró, T., Vilahur, G.: Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Hear. J. Acute Cardiovasc. Care 1, 60–74 (2012). https://doi.org/10.1177/2048872612441582

    Article  Google Scholar 

  13. Mundi, S., Massaro, M., Scoditti, E., Carluccio, M.A., van Hinsbergh, V.W.M., Iruela-Arispe, M.L., De Caterina, R.: Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc. Res. 114, 35–52 (2018). https://doi.org/10.1093/cvr/cvx226

    Article  Google Scholar 

  14. Chen, J., Su, Y., Pi, S., Hu, B., Mao, L.: The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Front. Cardiovasc. Med. 8, 682389 (2021). https://doi.org/10.3389/fcvm.2021.682389

    Article  Google Scholar 

  15. Ross, R.: Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999). https://doi.org/10.1056/NEJM199901143400207

    Article  Google Scholar 

  16. Cassar, A., Holmes, D.R., Jr., Rihal, C.S., Gersh, B.J.: Chronic coronary artery disease: diagnosis and management. Mayo Clin. Proc. 84, 1130–1146 (2009). https://doi.org/10.4065/mcp.2009.0391

    Article  Google Scholar 

  17. Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenosis—II Unsteady flow. J. Biomech. 6, 547–559 (1973). https://doi.org/10.1016/0021-9290(73)90012-2

    Article  Google Scholar 

  18. Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenosis—I Steady flow. J. Biomech. (1973). https://doi.org/10.1016/0021-9290(73)90099-7

    Article  Google Scholar 

  19. Back, L.D., Radbill, J.R., Cronfold, D.A.: Analysis of pulsatile viscous flow through diseased coronary arteries of man. J. Biomech. 10, 339–353 (1977)

    Article  Google Scholar 

  20. Padmanabban, N.: Mathematical model of arterial stenosis. Med. Biol. Eng. Comput. 18, 281–286 (1980)

    Article  Google Scholar 

  21. Mehrotra, R., Jayaraman, G., Padmanabhan, N.: Pulsatile blood flow in a stenosed artery—a theoretical model. Med. Biol. Eng. Comput. 23, 55–62 (1985). https://doi.org/10.1007/BF02444028

    Article  Google Scholar 

  22. Mishra, J.C., Chakravorty, S.: Flow in arteries in the presence of stenosis. J. Biomech. 19, 1907–1918 (1986)

    Google Scholar 

  23. Mustapha, N., Mandal, P.K., Johnston, P.R., Amin, N.: A numerical simulation of unsteady blood flow through multi-irregular arterial stenoses. Appl. Math. Model. 34, 1559–1573 (2010). https://doi.org/10.1016/j.apm.2009.09.008

    Article  MathSciNet  MATH  Google Scholar 

  24. Chakravarty, S., Mandal, P.K.: Two-dimensional blood flow through tapered arteries under stenotic conditions. Int. J. Non-Linear Mech. 35, 779–793 (2000). https://doi.org/10.1016/S0020-7462(99)00059-1

    Article  MATH  Google Scholar 

  25. Sankar, D.S., Ismail, A.: Two-fluid mathematical models for blood flow in Stenosed arteries: a comparative study. Bound. Value Probl. 2009, 568657 (2009). https://doi.org/10.1155/2009/568657

    Article  MathSciNet  MATH  Google Scholar 

  26. Sankar, D.S.: Two-fluid nonlinear mathematical model for pulsatile blood flow through stenosed arteries. Bull. Malays. Math. Sci. Soc. 35, 487–495 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Sankar, D.S., Jaafar, N.A.B., Yatim, Y.: Nonlinear analysis for shear augmented dispersion of solutes in blood flow through narrow arteries. J. Appl. Math. 2012, 812535 (2012). https://doi.org/10.1155/2012/812535

    Article  MathSciNet  MATH  Google Scholar 

  28. Gauthier, P.: Mathematics in Atmospheric Sciences: An Overview. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Ismail, Z., Abdullah, I., Mustapha, N., Norsarahaida, A.: A power-law model of blood flow through a tapered overlapping stenosed artery. Appl. Math. Comput. 195, 669–680 (2008). https://doi.org/10.1016/j.amc.2007.05.014

    Article  MathSciNet  MATH  Google Scholar 

  30. Afiqah, W.S., Sankar, D.S.: Effects of porosity in four-layered non-linear blood rheology in constricted narrow arteries with clinical applications. Comput. Methods Programs Biomed. 199, 105907 (2020). https://doi.org/10.1016/j.cmpb.2020.105907

    Article  Google Scholar 

  31. Afiqah, W.S., Sankar, D.S.: Two-phase nonlinear rheological analysis of blood flow in small diameter blood vessels with constriction. ARPN J. Eng. Appl. Sci. 15, 1129–1143 (2020)

    Google Scholar 

  32. Sankar, D.S., Yatim, Y.: Comparative analysis of mathematical models for blood flow in tapered constricted arteries. Abstr. Appl. Anal. (2012). https://doi.org/10.1155/2012/235960

    Article  MathSciNet  MATH  Google Scholar 

  33. Sankar, D.S., Lee, U., Nagar, A.K., Morsidi, M.: Mathematical analysis of Carreau fluid model for blood flow in tapered constricted arteries. AIP Conf. Proc. 2016, 1–20 (2018). https://doi.org/10.1063/1.5055530

    Article  Google Scholar 

  34. Pokhrel, P., Kafle, J., Kattel, P., Gaire, H.: Analysis of blood flow through artery with mild stenosis. J. Inst. Sci. Technol. 25, 33–38 (2020). https://doi.org/10.3126/jist.v25i2.33732

    Article  Google Scholar 

  35. Manisha, Nasha, V., Kumar, S.: Non-Newtonian blood flow model with the effect of different geometry of stenosis. J. Math. Comput. Sci. (2022). https://doi.org/10.28919/jmcs/7104

    Article  Google Scholar 

  36. Sarwar, L., Hussain, A.: Flow characteristics of Au-blood nanofluid in stenotic artery. Int. Commun. Heat Mass Transf. 127, 105486 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105486

    Article  Google Scholar 

  37. Anand, M., Rajagopal, K., Rajagopal, K.R.: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5, 183–218 (2003). https://doi.org/10.1080/10273660412331317415

    Article  MathSciNet  MATH  Google Scholar 

  38. Alfeo, M., Pagotto, A., Barbieri, G., Foster, T., Vanhoorelbeke, K., De Filippis, V., Speziale, P., Pietrocola, G.: Staphylococcus aureus iron-regulated surface determinant B (IsdB) protein interacts with von Willebrand factor and promotes adherence to endothelial cells. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-02065-w

    Article  Google Scholar 

  39. Lowe, G.D.: Rheological influences on thrombosis. Baillieres’s Clin. Haematol. 12, 435–449 (1999)

    Google Scholar 

  40. Sankar, D.S.: Perturbation analysis for pulsatile flow of Carreau fluid through tapered stenotic arteries. Int. J. Biomath. 09, 1650063 (2015). https://doi.org/10.1142/S1793524516500637

    Article  MathSciNet  MATH  Google Scholar 

  41. Palta, S., Saroa, R., Palta, A.: Overview of the coagulation system. Indian J. Anaesth. 58, 515–523 (2014). https://doi.org/10.4103/0019-5049.144643

    Article  Google Scholar 

  42. Gimbrone, M.A.: Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb. Haemost. 82, 722–726 (1999)

    Article  Google Scholar 

  43. Roka-Moiia, Y., Walk, R., Palomares, D.E., Ammann, K.R., Dimasi, A., Italiano, J.E., Sheriff, J., Bluestein, D., Slepian, M.J.: Platelet activation via shear stress exposure induces a differing pattern of biomarkers of activation versus biochemical agonists. Thromb. Haemost. 120, 776–792 (2020). https://doi.org/10.1055/s-0040-1709524

    Article  Google Scholar 

  44. Macfarlane, R.G.: An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202, 498–499 (1964). https://doi.org/10.1038/202498a0

    Article  Google Scholar 

  45. Chien, S., Usami, S., Taylor, H.M., Lundberg, J.L., Gregersen, M.I.: Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87 (1966). https://doi.org/10.1152/jappl.1966.21.1.81

    Article  Google Scholar 

  46. Evans, E.A., Hochmuth, R.M.: Membrane viscoelasticity. Biophys. J. 16, 1–11 (1976). https://doi.org/10.1016/S0006-3495(76)85658-5

    Article  Google Scholar 

  47. Schmid-Schönbein, G.W., Sung, K.L., Tözeren, H., Skalak, R., Chien, S.: Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–256 (1981). https://doi.org/10.1016/S0006-3495(81)84726-1

    Article  Google Scholar 

  48. Thurston, G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972). https://doi.org/10.1016/S0006-3495(72)86156-3

    Article  Google Scholar 

  49. Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.I.: Blood viscosity: influence of erythrocyte deformation. Science 157, 827–829 (1967). https://doi.org/10.1126/science.157.3790.827

    Article  Google Scholar 

  50. Chien, S., Sung, K.L., Skalak, R., Usami, S., Tözeren, A.: Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys. J. 24, 463–487 (1978). https://doi.org/10.1016/S0006-3495(78)85395-8

    Article  Google Scholar 

  51. Thurston, G.B.: Frequency and shear rate dependence of viscoelasticity of blood. Biorheology 10, 375–381 (1973)

    Article  Google Scholar 

  52. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4, 59–68 (2004)

    Google Scholar 

  53. Lasslo, A.: Blood Platelet Function and Medicinal Chemistry. Elsevier Biomedical, New York (1984)

    Google Scholar 

  54. Ruggeri, Z.M., Dent, J.A., Saldivar, E.: Contribution of distinctive adhesive interactions to platelet aggregation in flowing blood. Blood 94, 172–178 (1999)

    Article  Google Scholar 

  55. Frojmovic, M.M., Mooney, R.F., Wong, T.: Dynamics of platelet glycoprotein IIb-IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration. Biophys. J. 67, 2060–2068 (1994). https://doi.org/10.1016/S0006-3495(94)80689-7

    Article  Google Scholar 

  56. Baumgartner, H.R.: The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5, 167–179 (1973). https://doi.org/10.1016/0026-2862(73)90069-1

    Article  Google Scholar 

  57. Affeld, K., Reininger, A.J., Gadischke, J., Grunert, K., Schmidt, S., Thiele, F.: Fluid mechanics of the stagnation point flow chamber and its platelet deposition. Artifical Organs. 19, 597–602 (1995)

    Article  Google Scholar 

  58. Tschopp, T.B., Baumgartner, H.R., Silberbauer, K., Sinzinger, H.: Platelet adhesion and platelet thrombus formation on Subendothelium of human arteries and veins exposed to flowing blood in vitro. A comparison with Rabbit Aorta. Pathophysiol. Haemost. Thromb. 8, 19–29 (1979). https://doi.org/10.1159/000214287

    Article  Google Scholar 

  59. Christodoulides, N., Feng, S.J., Resendic, J.C., Kroll, M.H.: Shear stress induces dynamic association of GpIbalpha with ABP and actin in human platelets. In: Thrombosis and Haemostasis (1999)

  60. Wurzinger, L.J.: Histophysiology of the circulating platelet. In: Advances in anatomy, embryology and cell biology (1990)

  61. Karsaj, I., Humphrey, J.D.: A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 46, 509–527 (2009). https://doi.org/10.3233/BIR-2009-0556

    Article  Google Scholar 

  62. Tsapikouni, T., Missirlis, Y.: PH and ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM. Colloids Surf. B Biointerfaces 57, 89–96 (2007). https://doi.org/10.1016/j.colsurfb.2007.01.011

    Article  Google Scholar 

  63. Gillespie, A.H., Doctor, A.: Red blood cell contribution to hemostasis. Front. Pediatr. 9, 1–9 (2021). https://doi.org/10.3389/fped.2021.629824

    Article  Google Scholar 

  64. MacIntyre, C.R., Bui, C.M.: Pandemics, public health emergencies and antimicrobial resistance - putting the threat in an epidemiologic and risk analysis context. Arch. Public Heal. 75, 54 (2017). https://doi.org/10.1186/s13690-017-0223-7

    Article  Google Scholar 

  65. Gillinov, A.M., McCarthy, P.M.: Curative surgery for atrial fibrillation: current status and minimally invasive approaches. Expert Rev. Cardiovasc. Ther. 1, 595–603 (2003). https://doi.org/10.1586/14779072.1.4.595

    Article  Google Scholar 

  66. Melillo, E., Palmiero, G., Ferro, A., Mocavero, P.E., Monda, V., Ascione, L.: Diagnosis and Management of Left Atrium Appendage Thrombosis in Atrial Fibrillation Patients Undergoing Cardioversion. Medicina (Kaunas) 55, 511 (2019). https://doi.org/10.3390/medicina55090511

    Article  Google Scholar 

  67. Hirsh, J.: Current anticoagulant therapy–unmet clinical needs. Thromb. Res. 109(Suppl), S1-8 (2003). https://doi.org/10.1016/s0049-3848(03)00250-0

    Article  Google Scholar 

  68. Thachil, J.: Antiplatelet therapy—a summary for the general physicians. Clin. Med. 16, 152–160 (2016). https://doi.org/10.7861/clinmedicine.16-2-152

    Article  Google Scholar 

  69. Ezekowitz, M.D., Netrebko, P.I.: Anticoagulation in management of atrial fibrillation. Curr. Opin. Cardiol. 18, 26–31 (2003). https://doi.org/10.1097/00001573-200301000-00004

    Article  Google Scholar 

  70. Cox, J.L., Schuessler, R.B., D’Agostino, H.J., Stone, C.M., Chang, B.-C., Cain, M.E., Corr, P.B., Boineau, J.P.: The surgical treatment of atrial fibrillation: III. Development of a definitive surgical procedure. J. Thorac. Cardiovasc. Surg. 101, 569–583 (1991). https://doi.org/10.1016/S0022-5223(19)36684-X

    Article  Google Scholar 

  71. Lampert, B.C., Dyke, D.B.S., Koelling, T.M.: Heart failure due to left ventricular systolic dysfunction BT - Practical Cardiology: Evaluation and Treatment of Common Cardiovascular Disorders. Presented at the (2020)

  72. Jiang, Y.-X., Jing, L.-D., Jia, Y.-H.: Clinical characteristics and risk factors of left ventricular thrombus after acute myocardial infarction: a matched case-control study. Chin Med J (Engl) 128, 2415–2419 (2015). https://doi.org/10.4103/0366-6999.164869

    Article  Google Scholar 

  73. Yavuzgil, O., Gürgün, C., Apaydin, A., Cinar, C., Kültürsay, H.: A giant inferoposterior true aneurysm of the left ventricle mimicking a pseudoaneurysm. Int. J. Cardiovasc. Imaging 22, 205–212 (2006). https://doi.org/10.1007/s10554-005-9013-3

    Article  Google Scholar 

  74. Okuyan, E., Okcun, B., Dinçkal, M.H., Mutlu, H.: Risk factors for development of left ventricular thrombus after first acute anterior myocardial infarction-association with anticardiolipin antibodies. Thromb. J. 8, 15 (2010). https://doi.org/10.1186/1477-9560-8-15

    Article  Google Scholar 

  75. Buckberg, G.D.: Congestive heart failure: treat the disease, not the symptom: return to normalcy/Part II—the experimental approach. J. Thorac. Cardiovasc. Surg. 134, 844–849 (2007). https://doi.org/10.1016/j.jtcvs.2007.05.053

    Article  Google Scholar 

  76. Oz, M.C., Gelijns, A.C., Miller, L., Wang, C., Nickens, P., Arons, R., Aaronson, K., Richenbacher, W., van Meter, C., Nelson, K., Weinberg, A., Watson, J., Rose, E.A., Moskowitz, A.J.: Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann. Surg. 238, 575–577 (2003). https://doi.org/10.1097/01.sla.0000090447.73384.ad

    Article  Google Scholar 

  77. Gürsoy, M.O., Kalçık, M., Yesin, M., Karakoyun, S., Bayam, E., Gündüz, S., Özkan, M.: A global perspective on mechanical prosthetic heart valve thrombosis: diagnostic and therapeutic challenges. Anatol. J. Cardiol. 16, 980 (2016)

    Google Scholar 

  78. Cox, J.L.: The surgical treatment of atrial fibrillation: IV. Surgical technique. J. Thorac. Cardiovasc. Surg. 101, 584–592 (1991). https://doi.org/10.1016/S0022-5223(19)36685-1

    Article  Google Scholar 

  79. Blum, K.M., Zakko, J., Fong, P., Maxfield, M.W., Cleary, M.A., Breuer, C.K.: Chapter 34 - Heart valve tissue engineering. Presented at the (2020)

  80. Kim, D., Bresette, C., Liu, Z., Ku, D.N.: Occlusive thrombosis in arteries. APL Bioeng. 3, 41502 (2019). https://doi.org/10.1063/1.5115554

    Article  Google Scholar 

  81. Violi, F., Pastori, D., Pignatelli, P.: Mechanisms and management of thrombo-embolism in atrial fibrillation. J. Atr. Fibrillation 7, 1112 (2014). https://doi.org/10.4022/jafib.1112

    Article  Google Scholar 

  82. Yamakawa, K., Umemura, Y., Hayakawa, M., Kudo, D., Sanui, M., Takahashi, H., Yoshikawa, Y., Hamasaki, T., Fujimi, S., group, J.S.D.I.C. (J-S.D. study: Benefit profile of anticoagulant therapy in sepsis: a nationwide multicentre registry in Japan. Crit. Care 20, 229 (2016) https://doi.org/10.1186/s13054-016-1415-1

  83. Hillegass, E., Puthoff, M., Frese, E.M., Thigpen, M., Sobush, D.C., Auten, B., Group, for the G.D.: Role of physical therapists in the management of individuals at risk for or diagnosed with venous thromboembolism: evidence-based clinical practice guideline. Phys. Ther. 96, 143–166 (2016). https://doi.org/10.2522/ptj.20150264

    Article  Google Scholar 

  84. Dahl, O.E.: Mechanisms of hypercoagulability. Thromb. Haemost. 82, 902–906 (1999)

    Article  Google Scholar 

  85. Rogers, H.J., Nakashima, M.O., Kottke-Marchant, K.: Hemostasis and Thrombosis. In: Hsi, E.D.B.T.H., Third, E. (eds.) Foundations in Diagnostic Pathology, pp. 57–105. Elsevier, Philadelphia (2018)

    Google Scholar 

  86. Tans, G., Nicolaes, G.A., Rosing, J.: Regulation of thrombin formation by activated protein C: effect of the factor V Leiden mutation. Semin. Hematol. 34, 244–255 (1997)

    Google Scholar 

  87. Tollefson, D.F., Friedman, K.D., Marlar, R.A., Bandyk, D.F., Towne, J.B.: Protein C deficiency. A cause of unusual or unexplained thrombosis. Arch. Surg. 123, 881–884 (1988). https://doi.org/10.1001/archsurg.1988.01400310095016

    Article  Google Scholar 

  88. Berruyer, M., Francina, A., Ffrench, P., Negrier, C., Boneu, B., Dechavanne, M.: Increased thrombosis incidence in a family with an inherited protein S deficiency and a high oxygen affinity hemoglobin variant. Am. J. Hematol. 46, 214–217 (1994). https://doi.org/10.1002/ajh.2830460310

    Article  Google Scholar 

  89. Lu, Z., Wang, F., Liang, M.: SerpinC1/Antithrombin III in kidney-related diseases. Clin. Sci. (Lond.) 131, 823–831 (2017). https://doi.org/10.1042/CS20160669

    Article  Google Scholar 

  90. Morris, R.J., Woodcock, J.P.: Evidence-based compression: prevention of stasis and deep vein thrombosis. Ann. Surg. 239, 162–171 (2004). https://doi.org/10.1097/01.sla.0000109149.77194.6c

    Article  Google Scholar 

  91. Line, B.R.: Pathophysiology and diagnosis of deep venous thrombosis. Semin. Nucl. Med. 31, 90–101 (2001). https://doi.org/10.1053/snuc.2001.21406

    Article  Google Scholar 

  92. Eklof, B., Arfvidsson, B., Kistner, R.L., Masuda, E.M.: Indications for surgical treatment of iliofemoral vein thrombosis. Hematol. Oncol. Clin. North Am. 14, 471–482 (2000). https://doi.org/10.1016/s0889-8588(05)70146-5

    Article  Google Scholar 

  93. Turetz, M., Sideris, A.T., Friedman, O.A., Triphathi, N., Horowitz, J.M.: Epidemiology, pathophysiology, and natural history of pulmonary embolism. Semin. Intervent. Radiol. 35, 92–98 (2018). https://doi.org/10.1055/s-0038-1642036

    Article  Google Scholar 

  94. Khalaj, R., Douroumis, D.: 4—Applications of long-lasting and implantable drug delivery systems for cardiovascular disease treatment. In: Larrañeta, E., Raghu Raj Singh, T., Donnelly, R.F.B.T.L.A.D.D.S. (eds.) Woodhead Publishing Series in Biomaterials, pp. 83–127. Woodhead Publishing, Sawston (2022)

    Google Scholar 

  95. Sartoretti, C., Sartoretti-Schefer, S., Duff, C., Buchmann, P.: Angioplasty balloon catheters used for distraction of the ankle joint. Arthroscopy 12, 82–86 (1996). https://doi.org/10.1016/S0749-8063(96)90224-8

    Article  Google Scholar 

  96. Balaji, N.R., Shah, P.B.: Radial artery catheterization. Circulation 124, e407–e408 (2011). https://doi.org/10.1161/CIRCULATIONAHA.111.019802

    Article  Google Scholar 

  97. Byrne, R.A., Stone, G.W., Ormiston, J., Kastrati, A.: Coronary balloon angioplasty, stents, and scaffolds. Lancet 390, 781–792 (2017). https://doi.org/10.1016/S0140-6736(17)31927-X

    Article  Google Scholar 

  98. McKavanagh, P., Zawadowski, G., Ahmed, N., Kutryk, M.: The evolution of coronary stents. Expert Rev. Cardiovasc. Ther. 16, 219–228 (2018). https://doi.org/10.1080/14779072.2018.1435274

    Article  Google Scholar 

  99. Zhao, X., Liu, D., Yu, C., Sun, Y., Chen, S.: Treatment of aortic and iliac artery occlusion by catheter thrombolysis combined with catheter thrombectomy and aortic bifurcation endovascular stent reconstruction. Case Rep. Vasc. Med. 2021, 6084226 (2021). https://doi.org/10.1155/2021/6084226

    Article  Google Scholar 

  100. Chaves, F., Garnacho-Montero, J., del Pozo, J.L., Bouza, E., Capdevila, J.A., de Cueto, M., Domínguez, M.Á., Esteban, J., Fernández-Hidalgo, N., Fernández Sampedro, M., Fortún, J., Guembe, M., Lorente, L., Paño, J.R., Ramírez, P., Salavert, M., Sánchez, M., Vallés, J.: Diagnosis and treatment of catheter-related bloodstream infection: clinical guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine a. Med. Intensiva 42, 5–36 (2018). https://doi.org/10.1016/j.medin.2017.09.012

    Article  Google Scholar 

  101. MacDonald, D.A.: Pulsatile flow in a catheterised artery. J. Biomech. 19, 239–249 (1986). https://doi.org/10.1016/0021-9290(86)90156-9

    Article  Google Scholar 

  102. Choi, S.U.S.: Nanofluids: From vision to reality through research. J. Heat Transfer 131, 1–9 (2009). https://doi.org/10.1115/1.3056479

    Article  Google Scholar 

  103. Nsofor, C.E.: Recent Patents on Nanofluids (Nanoparticles in Liquids) Heat Transfer, http://www.eurekaselect.com/node/95146/article (2008)

  104. Nadeem, S., Ul Haq, R., Khan, Z.H.: Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng. J. 53, 219–224 (2014). https://doi.org/10.1016/j.aej.2013.11.003

    Article  Google Scholar 

  105. Afiqah, W.S., Sankar, D.S., Nagar, A.K.: Effects of catheter, stenosis and thrombosis in non-Newtonian blood flow through narrow arteries with clinical applications: a mathematical model. Int. J. Appl. Comput. Math. 8, 136 (2022). https://doi.org/10.1007/s40819-022-01335-z

    Article  MathSciNet  MATH  Google Scholar 

  106. Elnaqeeb, T., Mekheimer, K.S., Alghamdi, F.: Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis. Math. Biosci. 282, 135–146 (2016). https://doi.org/10.1016/j.mbs.2016.10.003

    Article  MathSciNet  MATH  Google Scholar 

  107. Srivastava, V.P., Rastogi, R.: Blood flow through a stenosed catheterized artery: effects of hematocrit and stenosis shape. Comput. Math. Appl. 59, 1377–1385 (2010). https://doi.org/10.1016/j.camwa.2009.12.007

    Article  MathSciNet  MATH  Google Scholar 

  108. Lasne, D., Jude, B., Susen, S.: From normal to pathological hemostasis. Can. J. Anaesth. 53, S2-11 (2006). https://doi.org/10.1007/BF03022247

    Article  Google Scholar 

  109. Sagripanti, A., Carpi, A.: Antithrombotic and prothrombotic activities of vascular endothelium. Biomed. Pharmacother. 54, 107–111 (2000). https://doi.org/10.1016/S0753-3322(00)88861-7

    Article  Google Scholar 

  110. Ajjan, R.A., Kietsiriroje, N., Badimon, L., Vilahur, G., Gorog, D.A., Angiolillo, D.J., Russell, D.A., Rocca, B., Storey, R.F.: Antithrombotic therapy in diabetes: which, when, and for how long? Eur. Heart J. 42, 2235–2259 (2021). https://doi.org/10.1093/eurheartj/ehab128

    Article  Google Scholar 

  111. Yamazaki, H., Mustard, J.F.: Platelet activation. Academic Press, Orlando, FL (1987)

    Google Scholar 

  112. Anthony Ware, J., Coller, B. S.: Platelet morphology, biochemistry, and function. In: Williams Hematology. McGraw Hill Publication. pp. 1161–1201 (1995)

  113. Robinson, W.F., Robinson, N.A.: Cardiovascular system. Jubb, Kennedy Palmer’s Pathol. Domest. Anim. 3, 1-101.e1 (2016). https://doi.org/10.1016/B978-0-7020-5319-1.00012-8

    Article  Google Scholar 

  114. Burki, S., Adachi, I.: Pediatric ventricular assist devices: current challenges and future prospects. Vasc. Health Risk Manag. 13, 177–185 (2017). https://doi.org/10.2147/VHRM.S82379

    Article  Google Scholar 

  115. Butchart, E.G., Gohlke-Bärwolf, C., Antunes, M.J., Tornos, P., De Caterina, R., Cormier, B., Prendergast, B., Iung, B., Bjornstad, H., Leport, C., Hall, R.J.C., Vahanian, A., on behalf of the Working Groups on Valvular Heart Disease and Cardiac Rehabilitation and Exercise Physiology, European Society of Cardiology, T.: Recommendations for the management of patients after heart valve surgery. Eur. Heart J. 26, 2463–2471 (2005) https://doi.org/10.1093/eurheartj/ehi426

  116. Van de Weerdt, E.K., Biemond, B.J., Baake, B., Vermin, B., Binnekade, J.M., van Lienden, K.P., Vlaar, A.P.J.: Central venous catheter placement in coagulopathic patients: risk factors and incidence of bleeding complications. Transfusion 57, 2512–2525 (2017). https://doi.org/10.1111/trf.14248

    Article  Google Scholar 

  117. Gleich, S.J., Wong, A.V., Handlogten, K.S., Thum, D.E., Nemergut, M.E.: Major short-term complications of arterial cannulation for monitoring in children. Anesthesiology 134, 26–34 (2021). https://doi.org/10.1097/ALN.0000000000003594

    Article  Google Scholar 

  118. Sankar, D.S., Hemalatha, K.: Pulsatile flow of Herschel-Bulkley fluid through stenosed arteries—a mathematical model. Int. J. Non. Linear. Mech. 41, 979–990 (2006). https://doi.org/10.1016/j.ijnonlinmec.2006.02.007

    Article  MATH  Google Scholar 

  119. Sankar, D.S., Nagar, A.K.: Nonlinear fluid models for biofluid flow in constricted blood vessels under body accelerations: a comparative study. J. Appl. Math. 2012, 950323 (2012). https://doi.org/10.1155/2012/950323

    Article  MATH  Google Scholar 

  120. Zidan, A.M., McCash, L.B., Akhtar, S., Saleem, A., Issakhov, A., Nadeem, S.: Entropy generation for the blood flow in an artery with multiple stenosis having a catheter. Alexandria Eng. J. 60, 5741–5748 (2021). https://doi.org/10.1016/j.aej.2021.04.058

    Article  Google Scholar 

  121. Mekheimer, K.S., Elmaboud, Y.A.: The influence of a micropolar fluid on peristaltic transport in an annulus: application of the clot model. Appl. Bionics Biomech. 5, 302195 (2008). https://doi.org/10.1080/11762320802256666

    Article  Google Scholar 

  122. Srinivasacharya, D., Mishra, M., Rao, A.R.: Peristaltic pumping of a micropolar fluid in a tube. Acta Mech. 161, 165–178 (2003). https://doi.org/10.1007/s00707-002-0993-y

    Article  MATH  Google Scholar 

  123. Ellahi, R., Rahman, S.U., Nadeem, S., Akbar, N.S.: Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl. Nanosci. 4, 919–926 (2014). https://doi.org/10.1007/s13204-013-0253-6

    Article  Google Scholar 

  124. Ahmed, A., Nadeem, S.: The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. J. Mol. Liq. 216, 615–623 (2016). https://doi.org/10.1016/j.molliq.2016.01.059

    Article  Google Scholar 

  125. Sankar, D.S., Lee, U.: Two-fluid Herschel–Bulkley model for blood flow in catheterized arteries. J. Mech. Sci. Technol. 22, 1008–1018 (2008). https://doi.org/10.1007/s12206-008-0123-4

    Article  Google Scholar 

  126. Sankar, D.S.: A two-fluid model for pulsatile flow in catheterized blood vessels. Int. J. Non. Linear. Mech. 44, 337–351 (2009). https://doi.org/10.1016/j.ijnonlinmec.2008.12.008

    Article  MATH  Google Scholar 

  127. Srivastava, V.P., Srivastava, R.: Particulate suspension blood flow through a narrow catheterized artery. Comput. Math. Appl. 58, 227–238 (2009). https://doi.org/10.1016/j.camwa.2009.01.041

    Article  MathSciNet  MATH  Google Scholar 

  128. Srivastava, V.P., Vishnoi, R., Mishra, S., Sinha, P.: Blood flow through a composite stenosis in catheterized arteries. J. Sci. Technol. 5, 55–64 (2010)

    Google Scholar 

  129. Mekheimer, K.S., Salama, F., Elkot, M.: The unsteady flow of a carreau fluid through inclined catheterized arteries having a balloon with time-variant overlapping stenosis. Walailak J. Sci. Technol. 12, 863–883 (2015)

    Google Scholar 

  130. El Kot, M.A., Abbas, W.: Numerical technique of blood flow through catheterized arteries with overlapping stenosis. Comput. Methods Biomech. Biomed. Engin. 20, 45–58 (2017). https://doi.org/10.1080/10255842.2016.1196198

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support extended by Universiti Teknologi Brunei for conducting this research through its internal Grant Scheme (UTB/GSR/2/2022 (15)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sankar.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajihah, S.A., Sankar, D.S. & Nagar, A.K. Influence of thrombosis, stenosis and catheter on rheological characteristics of blood: a systematic review. Arch Appl Mech 93, 4279–4304 (2023). https://doi.org/10.1007/s00419-023-02496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02496-z

Keywords

Navigation