Skip to main content
Log in

A modified Green’s function approach to particle image velocimetry pressure estimates with an application to microenergy harvesters

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Performance of simple, fluidic harvesters consisting of a piezoelectric cantilever strongly relies on a time-dependent fluid forcing they experience. To quantify this forcing, an analytical solution of  a pressure Poisson equation (PPE) is presented that uses particle image velocimetry (PIV) data to calculate pressure around the harvester. This analytical solution is based on a modified Green’s function approach and provides a favorable method of calculating the pressure field from PIV data. It eliminates a need to compute higher-order derivatives of velocity that are present in the viscous terms and it eliminates the need to integrate Navier–Stokes equations to find the pressure along the boundaries of interest. An experiment was carried out to validate this solution. Pressure distribution along the piezoelectric cantilever was calculated by solving PPE analytically as a single vortex passed over it. This distribution was then integrated to calculate the net force acting on the beam. Euler–Bernoulli theory was then used to predict the beam’s dynamic response based on the calculated pressure. Using dielectric properties of the piezoelectric harvester, the voltage and total power output were computed from the motion of the beam. These values were compared to the voltage and power directly measured during the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21(13), 1263–1278 (2010)

    Article  Google Scholar 

  2. Baur, T., Köngeter, J.: PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In: 3rd International Workshop on Particle Image Velocimetry. Santa Barbara (1999)

  3. Danesh-Yazdi, A.H., Goushcha, O., Elvin, N., Andreopoulos, Y.: Fluidic energy harvesting beams in grid turbulence. Exp. Fluids 56(8), 161 (2015)

    Article  Google Scholar 

  4. de Kat, R., van Oudheusden, B.W.: Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 52(5), 1089–1106 (2012)

    Article  Google Scholar 

  5. Elzawawy, A.: Time resolved particle image velocimetry techniques with continuous wave laser and their application to transient flows. Ph. D. Dissertation, The City College of New York, New York City (2012)

  6. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19(11), 1311–1325 (2008)

    Article  Google Scholar 

  7. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  8. Fakhzan, M.N., Muthalif, A.G.A.: Harvesting vibration energy using piezoelectric material: modeling, simulation and experimental verifications. Mechatronics 23, 61–66 (2013)

    Article  Google Scholar 

  9. Felippa, C.A.: Introduction to Finite Element Methods. University of Colorado, Colorado (2004)

    Google Scholar 

  10. Fujisawa, N., Nakamura, Y., Matsuura, F., Sato, Y.: Pressure field evaluation in microchannel junction flows through μPIV measurement. Microfluid. Nanofluid. 2(5), 447–453 (2006)

    Article  Google Scholar 

  11. Goushcha, O., Elvin, N., Andreopoulos, Y.: Interactions of vortices with a flexible beam with applications in fluidic energy harvesting. Appl. Phys. Lett. 104(2), 021919 (2014)

    Article  Google Scholar 

  12. Hildebrand, F.B.: Advanced Calculus for Applications. Prentice-Hall, Hoboken (1976)

    MATH  Google Scholar 

  13. Honkan, A., Andreopoulos, Y.: Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 29–96 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hosokawa, S., Moriyama, S., Tomiyama, A., Takada, N.: PIV measurement of pressure distributions about single bubbles. J. Nucl. Sci. Technol. (Tokyo) 40(10), 754–762 (2003)

    Article  Google Scholar 

  15. Joshi, P., Liu, X., Katz, J.: Effect of mean and fluctuating pressure gradients on boundary layer turbulence. J. Fluid Mech. 748, 36–84 (2014)

    Article  Google Scholar 

  16. Liu, X., Katz, J.: Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids 41(2), 227 (2006)

    Article  Google Scholar 

  17. Murai, Y., Nakada, T., Suzuki, T., Yamamoto, F.: Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine. Meas. Sci. Technol. 18(8), 2491–2503 (2007)

    Article  Google Scholar 

  18. Noca, F., Shiels, D., Jeon, D.: A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocimetry fields and their derivatives. J. Fluids Struct. 13(5), 551–578 (1999)

    Article  Google Scholar 

  19. Panciroli, R., Maurizio, P.: Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp. Fluids. 54(12), 1–13 (2013)

    Article  Google Scholar 

  20. Rao, S.S.: Vibration of Continuous Systems, vol. 464. Wiley, New York (2007)

    Google Scholar 

  21. Shams, A., Jalalisendi, M., Porfiri, M.: Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys. Fluids 27(2), 027103 (2015)

    Article  Google Scholar 

  22. Thielicke, W., Stamhuis, E. J.: PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software, 2(1) (2014)

  23. Unal, M.F., Lin, J.C., Rockwell, D.: Force prediction by PIV imaging: a momentum-based approach. J. Fluids Struct. 11(8), 965–971 (1997)

    Article  Google Scholar 

  24. van Oudheusden, B.W.: PIV-based pressure measurement. Meas. Sci. Technol. 24(3), 32001 (2013)

    Article  Google Scholar 

  25. van Oudheusden, B.W., Scarano, F., Roosenboom, E.W.M., Casimiri, E.W.F., Souverein, L.J.: Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp. Fluids 43(2), 153–162 (2007)

    Article  Google Scholar 

  26. Villegas, A., Diez, F.J.: Evaluation of unsteady pressure fields and forces in rotating airfoils from time-resolved PIV. Exp. Fluids 55(4), 1697 (2014)

    Article  Google Scholar 

  27. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  28. Yao, M., Liu, P., Ma, L., Wang, H., Zhang, W.: Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam. Acta Mech. Sin. 36, 557–577 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is sponsored by the National Science Foundation under Grant No. CBET #1033117

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Goushcha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

This appendix presents the solution if the boundary value problem shown as Eqs. (19)–(21) to obtain Hilbert’s function \(H(x, y; \xi , \eta )\)

$$\frac{{\partial }^{2}H}{\partial {\xi }^{2}}+\frac{{\partial }^{2}H}{\partial {\eta }^{2}}=\delta \left(\xi -x\right)\delta \left(\eta -y\right)-\beta \left(\xi ,\eta \right)$$
(19)

with

$$\int_{0}^{H} {\int }_{0}^{L}\beta \left(\xi , \eta \right)\mathrm{d}\xi \mathrm{d}\eta =1$$
(20)

and boundary conditions:

$$\frac{\partial H}{\partial \xi }\left(0, \eta \right)=\frac{\partial H}{\partial \xi }\left(L, \eta \right)=\frac{\partial H}{\partial \eta }\left(\xi ,0\right)=\frac{\partial H}{\partial \eta }\left(\xi , W\right)=0$$
(21)

Using a finite cosine transform in \(\xi\)

$$\widehat{{H}_{n}}= {\int }_{o}^{L}H\mathrm{cos}\frac{n\pi \xi }{L} \mathrm{d}\xi$$
(22)

Equation (20) becomes:

$$- \frac{{n}^{2}{\pi }^{2}}{{L}^{2}} \widehat{{H}_{n}}+\frac{{\partial }^{2} \widehat{{H}_{n}} }{\partial {\eta }^{2}}=\delta \left(\eta -y\right) \mathrm{cos}\frac{n\pi x}{L}-{\int }_{o}^{L}\beta (\xi , \eta )\mathrm{cos}\frac{n\pi \xi }{L} \mathrm{d}\xi$$
(23)

Similarly, applying a finite cosine transform in \(\eta\) Eq. (23) becomes:

$$-\frac{{n}^{2}{\pi }^{2}}{{L}^{2}}\widehat{\widehat{{H}_{nm}}}-\frac{{m}^{2}{\pi }^{2}}{{W}^{2}}\widehat{\widehat{{H}_{nm}}}=\mathrm{cos}\frac{n\pi x}{L}\mathrm{cos}\frac{m\pi y}{W}-\widehat{\widehat{{\beta }_{nm}}}$$
(24)

Solving for \(\widehat{\widehat{{H}_{nm}}}\)

$$\widehat{{\widehat{{H_{nm} }}}} = - \frac{{\cos \frac{n\pi x}{L}\cos \frac{m\pi y}{W} - \widehat{{\widehat{{\beta_{nm} }}}}}}{{\frac{{n^{2} \pi^{2} }}{{L^{2} }} + \frac{{m^{2} \pi^{2} }}{{W^{2} }}}}$$
(25)

The simplest choice of the function \(\beta \left(\xi , \eta \right)\), which satisfies condition (20), is

$$\beta \left(\xi , \eta \right)=\frac{1}{LW}$$
(26)

Finite cosine transform of this function in \(\xi\) and \(\eta\) gives

$$\widehat{\widehat{\beta }}= \left\{\begin{array}{c}1\quad n=m=0\\ 0\quad \text{otherwise}\end{array}\right.$$
(27)

Thus, the inversion of (25) yields:

$$\begin{aligned} H\left( {x,y; \xi , \eta } \right) & = H_{0} - \frac{2}{{\pi^{2} }}\frac{L}{W}\mathop \sum \limits_{n = 1}^{\infty } \frac{1}{{n^{2} }}\cos \frac{n\pi \xi }{L}\cos \frac{n\pi x}{L} \\ & \quad - \frac{2}{{\pi^{2} }}\frac{W}{L}\mathop \sum \limits_{m = 1}^{\infty } \frac{1}{{m^{2} }}\cos \frac{m\pi \eta }{W}\cos \frac{m\pi y}{W} \\ & \quad - \frac{4LW}{{\pi^{2} }}\mathop \sum \limits_{n = 1}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } \frac{{\cos \frac{n\pi \xi }{L}\cos \frac{m\pi \eta }{W}\cos \frac{n\pi x}{L}\cos \frac{m\pi y}{W}}}{{n^{2} W^{2} + m^{2} L^{2} }} \\ \end{aligned}$$
(28)

where \({H}_{o}\) is an indeterminate constant whose value maybe arbitrary set. The Hilbert’s function has the symmetry property \(H\left(x, y; \xi , \eta \right)=H(\xi , \eta ;x, y)\). A sample plot of Hilbert’s function for \(x=y=0.5\) on the domain \(0\le \xi \le 1\) and \(0\le \eta \le 1\) is shown in Fig. 

Fig. 23
figure 23

Sample plot of a Hilbert’s function for \(x=y=0.5\) on a domain \(0\le \xi \le 1\) and \(0\le \eta \le 1\)

23.

Appendix 2

The force estimated by the PPE can be used to predict the transverse motion of the cantilever beam by solving the Euler–Bernoulli equation

$$EI\frac{{\partial }^{4}{y}_{b}(x, t)}{\partial {x}^{4}}+\rho A\frac{{\partial }^{2}{y}_{b}(x, t)}{\partial {t}^{2}}+c \frac{\partial {y}_{b}\left(x, t\right)}{\partial t }=g(x, t)$$
(29)

Equation (29) is solved assuming a solution of the form

$${y}_{b}\left(x, t\right)= \sum_{n=1 }^{\infty }{W}_{n}\left(x\right){\eta }_{n}(t)$$
(30)

The modal shape function \({W}_{n}\left(x\right)\) is obtained using fixed-end and free-end boundary conditions for a cantilever beam of length \(L\), resulting in the classical expression

$${W}_{n}\left(x\right)= {A}_{n}{w}_{n}\left(x\right)={A}_{n}\left\{\left(\mathrm{cos}\left({\xi }_{n}x\right)-\mathrm{cosh}\left({\xi }_{n}x\right)\right)- \frac{\mathrm{cos}\left({\xi }_{n}L\right)+\mathrm{cosh}\left({\xi }_{n}L\right)}{\mathrm{sin}\left({\xi }_{n}L\right)+\mathrm{sinh}\left({\xi }_{n}L\right)}\left(\mathrm{sin}\left({\xi }_{n}x\right)-\mathrm{sinh}\left({\xi }_{n}x\right)\right)\right\}$$
(31)

with the eigenvalues \({\xi }_{n}\) given by the real roots of the transcendental equation

$$1+\mathrm{cos}\left({\xi }_{n}L\right)\mathrm{cosh}\left({\xi }_{n}L\right)=0$$
(32)

The coefficient \({A}_{n}\) is arbitrary and for convenience may be defined so as to satisfy the condition

$$\int_{0}{L}\rho A{W}_{n}^{2}\left(x\right)\mathrm{d}x=\rho A {A}_{n}^{2}\int_{0}^{L}{w}_{n}^{2}\left(x\right)\mathrm{d}x=1$$
(33)

The function \({\eta }_{n}\left(t\right)\) in Eq. (30) satisfies the modal equation

$$\frac{{\mathrm{d}}^{2}{\eta }_{n}}{\mathrm{d}{t}^{2}}+2 {\zeta }_{n} {\omega }_{n}\frac{\mathrm{d}{\eta }_{n}}{\mathrm{d}t}+{\omega }_{n }^{2}{\eta }_{n}=p(t)$$
(34)

where \({\omega }_{n}=\sqrt{\frac{EI}{\rho A} }{{\xi }_{n}}^{2}\) is the natural frequency, \({\zeta }_{n}=\frac{c}{2\rho A{\omega }_{n}}\) is the damping coefficient, and \(p\left(t\right)\) is the normalized forcing function:

$$p\left(t\right)= \int_{0}^{L}{W}_{n}\left(x\right)g\left(x, t\right)\mathrm{d}x$$
(35)

The solution to Eq. (34) is

$$\eta_{n} \left( t \right) = \frac{1}{{\omega_{d} }}\mathop \int \limits_{0}^{t} p\left( \tau \right)e^{{ - \zeta_{n} \omega_{n} \left( {t - \tau } \right)}} \sin \left( {\omega_{d} \left( {t - \tau } \right)} \right){\text{d}}\tau \;{\text{for}}\;0 \le {\text{t}} \le t_{0}$$
(36)
$$\eta_{n} \left( t \right) = \left[ {\eta_{n} \left( {t_{0} } \right)\cos \left( {\omega_{d} \left( {t - t_{0} } \right)} \right) + \frac{1}{{\omega_{d} }}\left( {\frac{{{\text{d}}\eta_{n} }}{{{\text{d}}t}}\left( {t_{0} } \right) + \zeta_{n} \omega_{n} \eta_{n} \left( {t_{0} } \right)} \right){\text{sin }}\left( {\omega_{d} \left( {t - t_{0} } \right)} \right)} \right]e^{{ - \zeta_{n} \omega_{n} \left( {t - t_{0} } \right)}} \;{\text{for}}\,t \ge t_{0}$$

where \({\omega }_{d}={\omega }_{n}\sqrt{{1-\zeta }_{n}^{2}}\). The solution consists of two segments: one for times \(0\le \mathrm{t}\le {t}_{0}\) associated with the motion due to the distributed force on the cantilever; the second associated with the free vibration after time \({t}_{0}\), once the vortex exerts no force on the cantilever.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goushcha, O., Andreopoulos, Y. & Ganatos, P. A modified Green’s function approach to particle image velocimetry pressure estimates with an application to microenergy harvesters. Arch Appl Mech 93, 1217–1239 (2023). https://doi.org/10.1007/s00419-022-02324-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02324-w

Keywords

Navigation