Skip to main content
Log in

The thermoelastic contact problem of one-dimensional hexagonal quasicrystal layer with interfacial imperfections

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The coupled thermo-mechanical contact between a rotating sphere made of one-dimensional hexagonal quasicrystal materials, and a layer-substrate system with interfacial imperfections, is investigated by applying the discrete convolution-fast Fourier transform (DC-FFT) algorithm. The effects of dislocation-like interface defects, friction coefficient, coating thickness and rotation velocity on the thermoelastic field are discussed. The effect of vertical imperfection on the phason normal displacement is opposite to that of horizontal imperfections. The discontinuity of the horizontal displacement plays a limiting role on the effect of the vertical discontinuities on the phason normal stress. The peak value of the normal phason displacement decreases, and the peak point obviously moves in the negative direction of the x-axis with the increase of friction coefficient, while the change of the phason normal stress is negligible. The numerical results may provide theoretical help for the design of quasicrystal coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dubois, J.M.: New prospects from potential applications of quasicrystal line materials. Mater. Sci. Eng. 294–296, 4–9 (2000)

    Article  Google Scholar 

  2. Dubois, J.M.: So useful, those quasicrystals. Isr. J. Chem. 51(11–12), 1168–1175 (2011)

    Article  Google Scholar 

  3. Bendersky, L.A., Burton, B.: A warm welcome to quasicrystals. J. Phase Equilib. Diffus. 33(2), 83–84 (2012)

    Article  Google Scholar 

  4. Li, X.Y., Wang, T., et al.: Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. J. Appl. Math. Mech. 95(5), 457–468 (2015)

    MATH  Google Scholar 

  5. Li, X.Y., Li, P.D., Zheng, R.F.: Thermo-elastic Green’s functions for an infinite bi-material of one-dimensional hexagonal quasicrystals. Phys. Lett. A 377(8), 637–642 (2013)

    Article  MATH  Google Scholar 

  6. Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A A376, 2004–2009 (2012)

    Article  MATH  Google Scholar 

  7. Li, P.D., Liu, Y.J., Zhang, H.: Indentation on a half-infinite one-dimensional hexagonal quasi-crystal space by a rigid flat-ended cylindrical indenter with uniform heat flux or temperature. Mech. Mater. 131, 33–46 (2019)

    Article  Google Scholar 

  8. Ma, L.L., Zhang, X., et al.: Steady state thermoelastic contact problem of one-dimensional hexagonal quasicrystals. J. Therm. Stresses 45(3), 214–233 (2022)

    Article  Google Scholar 

  9. Yang, L.Z., Zhang, L.L., Song, F., Gao, Y.: General solutions for three-dimensional thermoelasticity of two-dimensional hexagonal quasicrystals and an application. J. Therm. Stresses 37, 363–379 (2014)

    Article  Google Scholar 

  10. Zhao, M.H., Zhang, X., et al.: Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks. Mech. Adv. Mater. Struct. 66, 1–16 (2022)

    Google Scholar 

  11. Wang, X., Zhang, J.Q.: A steady line heat source in a decagonal quasicrystalline half-space. Mech. Res. Commun. 32, 420–428 (2005)

    Article  MATH  Google Scholar 

  12. Zhao, M.H., et al.: Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads. Eng. Fract. Mech. 243, 107534 (2021)

    Article  Google Scholar 

  13. Peng, Y.Z., Fan, T.Y.: Crack and indentation problems for one-dimensional hexagonal quasicrystals. Eur. Phys. J. B 21(1), 39–44 (2001)

    Article  Google Scholar 

  14. Zhou, W.M., Fan, T.Y., Yin, S.Y.: Axisymmetric contact problem of cubic quasicrystalline materials. Acta Mech. Solida Sin. 15, 68–74 (2002)

    Google Scholar 

  15. Gao, Y., Ricoeur, A.: Three-dimensional Green’s function for two-dimensional quasicrystal bimaterials. Proc. R. Soc. A 467(2133), 2622–2642 (2011)

    Article  MATH  Google Scholar 

  16. Gao, Y., Zhao, B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Model. 33, 3382–3391 (2009)

    Article  MATH  Google Scholar 

  17. Wu, Y.F., Chen, W.Q., Li, X.Y.: Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Philos. Mag. 93, 858–882 (2013)

    Article  Google Scholar 

  18. Li, X.Y., Wu, F., Wu, Y.F., Chen, W.Q.: Indentation on two-dimensional hexagonal quasicrystals. Mech. Mater. 76, 121–136 (2014)

    Article  Google Scholar 

  19. Zhao, X.F., Li, X., Ding, S.H.: Two kinds of contact problems in three-dimensional icosahedral quasicrystals. Appl. Math. Mech. Engl. Ed. 12, 1569–1580 (2015)

    Article  MATH  Google Scholar 

  20. Zhao, X.F., Li, X., Ding, S.H.: Two kinds of contact problems in dodecagonal quasicrystals of point group 12 mm. Acta Mech. Solida Sin. 29, 167–177 (2016)

    Article  Google Scholar 

  21. Zhang, Z.G., Ding, S.H., Li, X.: Two kinds of contact problems for two-dimensional hexagonal quasicrystals. Mech. Res. Commun. 113, 103683 (2021)

    Article  Google Scholar 

  22. Huang, R.K., Ding, S.H., Zhang, X., Li, X.: Frictional contact problem of a rigid charged indenter on two dimensional hexagonal piezoelectric quasicrystals coating. Philos. Mag. 101(19), 2123–2156 (2021)

    Article  Google Scholar 

  23. Huang, R.K., et al.: Sliding frictional contact of one-dimensional hexagonal piezoelectric quasicrystals coating on piezoelectric substrate with imperfect interface. Int. J. Solids Struct. 239–240, 111423 (2022)

    Article  Google Scholar 

  24. Huang, R.K., et al.: Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer. Arch. Appl. Mech. 91, 4693–4716 (2021)

    Article  Google Scholar 

  25. Zhang, X., Wang, Q.J.: Thermoelastic contact of layered materials with interfacial imperfection. Int. J. Mech. Sci. 186, 105904 (2020)

    Article  Google Scholar 

  26. Li, D., Wang, Z., Yu, H., Wang, Q.: Elastic fields caused by eigenstrains in two joined half-spaces with an interface of coupled imperfections: dislocation-like and force-like conditions. Int. J. Eng. Sci. 126, 22–52 (2018)

    Article  MATH  Google Scholar 

  27. Wang, Z., Yu, H., Wang, Q.: Layer-substrate system with an imperfectly bonded interface: coupled dislocation-like and force-like conditions. Int. J. Solids Struct. 122, 91–109 (2017)

    Article  Google Scholar 

  28. He, T., Wang, Z., Wu, J.: Effect of imperfect coating on the elastohydrodynamic lubrication: dislocation-like and force-like coating-substrate interfaces. Tribol. Int. 143, 106098 (2020)

    Article  Google Scholar 

  29. Grushko, B., Holland-Moritz, D., Wittmann, R., Wilde, G.: Transition between periodic and quasiperiodic structures in Al–Ni–Co. J. Alloys Compd. 280, 215–230 (1998)

    Article  Google Scholar 

  30. Hiraga, K., Ohsuna, T., Sun, W., Sugiyama, K.: The structural characteristics of Al–Co–Ni decagonal quasicrystals and crystalline approximants. J. Alloys Compd. 342, 110–114 (2002)

    Article  Google Scholar 

  31. Barrow, J.A., Lemieux, M.C., Cook, B.A., et al.: Micro-surface and bulk thermal behavior of a single-grain decagonal Al–Ni–Co quasicrystal. J. Non-Cryst. Solids 334–335, 312–316 (2004)

    Article  Google Scholar 

  32. Burkardt, S., Erbudak, M., et al.: High-temperature surface oxidation of the decagonal Al–Co–Ni quasicrystal. Surf. Sci. 603, 867–872 (2009)

    Article  Google Scholar 

  33. Aylanna, P.M., et al.: Additive manufacturing of a quasicrystal-forming Al95Fe2Cr2Ti1 alloy with remarkable high-temperature strength and ductility. Addit. Manuf. 41, 10960 (2021)

    Google Scholar 

  34. Stagno, V., Bindi, L., et al.: Icosahedral AlCuFe quasicrystal at high pressure and temperature and its implications for the stability of icosahedrite. Sci. Rep. 4, 5869 (2014)

    Article  Google Scholar 

  35. Sato, K., Baier, F., et al.: Observation of high-temperature thermal vacancies in Al70Pd21Mn9 quasicrystals. Phys. Rev. B Condens. Matter Mater. Phys. 68, 21 (2003)

    Article  Google Scholar 

  36. Ye, F., Sprengel, W., et al.: High temperature vacancy studies of icosahedral Zn65Mg25Er10 quasicrystal. J. Phys. Condens. Matter 16(9), 1531–1537 (2004)

    Article  Google Scholar 

  37. Fikar, J., et al.: High temperature plastic behaviour of icosahedral AlCuFe quasicrystals. MRS Online Proc. Libr. 643, 1 (2000)

    Google Scholar 

  38. Zhang, X., et al.: A new approach for analyzing the temperature rise and heat partition at the interface of coated tool tip-sheet incremental forming systems. Int. J. Heat Mass Transf. 129, 1172–1183 (2019)

    Article  Google Scholar 

  39. Wang, T.J., et al.: Three-dimensional thermoelastic contact model of coated solids with frictional heat partition considered. Coatings 8, 470 (2018)

    Article  Google Scholar 

  40. Zhang, X., Wang, Z., Shen, H., et al.: Frictional contact involving a multiferroic thin film subjected to surface magneto-electro-elastic effects. Int. J. Mech. Sci. 131, 633–648 (2017)

    Article  Google Scholar 

  41. Zhang, X., Wang, Z.J., Shen, H.M., Wang, Q.: An efficient model for the frictional contact between two multiferroic bodies. Int. J. Solids Struct. 130, 133–152 (2018)

    Article  Google Scholar 

  42. Zhang, X., Wang, Q.: A SAM-FFT based model for 3D steady-state elastodynamic frictional contacts. Int. J. Solids Struct. 170, 53–67 (2019)

    Article  Google Scholar 

  43. Zhang, H.B., Wang, W.Z., et al.: Semi-analytical solution of three-dimensional steady state thermoelastic contact problem of multilayered material under friction heating. Int. J. Therm. Sci. 127, 384–399 (2018)

    Article  Google Scholar 

  44. Liu, S., Wang, Q., Liu, G.: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243, 101–111 (2000)

    Article  Google Scholar 

  45. Liu, S., Wang, Q.: Studying contact stress fields caused by surface tractions with a discrete convolution and fast Fourier transform algorithm. J. Tribol. 124(1), 36–45 (2002)

    Article  Google Scholar 

  46. Wang, Z., Yu, C., Wang, Q.: An efficient method for solving three-dimensional fretting contact problems involving multilayered or functionally graded materials. Int. J. Solids Struct. 66, 46–61 (2015)

    Article  Google Scholar 

  47. Wang, Z.J., Wang, W.Z., Wang, H., et al.: Partial slip contact analysis on three-dimensional elastic layered half space. ASME J. Tribol. 132(2), 021403 (2010)

    Article  Google Scholar 

  48. Chen, W.Q., Ding, H.J.: Three-dimensional general solution of transversely isotropic thermoelasticity and the potential theory method. Acta. Mech. Sin. 35, 5 (2003)

    Google Scholar 

  49. Ding, H., Chen, W., Zhang, L.: Elasticity of Transversely Isotropic Materials. Springer (2006)

  50. Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47(7), 2153–2164 (1999)

    Article  Google Scholar 

  51. Hou, P.F., et al.: Green’s functions for semi-infifinite transversely isotropic thermoelastic materials. J. Appl. Math. Mech. 88(1), 33–41 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12262033, 12272195, 12062021 and 12062022), the Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project (KJT2020001), and the Natural Science Foundation of Ningxia (2022AAC03068, 2022AAC03001). Zhang X. would also like to acknowledge the supports by the National Natural Science Foundation of China (12102085), the Postdoctoral Science Foundation of China (2020M683278, 2021T140091), and the Sichuan Science and Technology Program (2021YFG0217), and the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China (ZYGX2021YGLH024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Li or Xin Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

This appendix provides the constants closely related to the material constants of 1D hexagonal QC and the correlation coefficients in thermoelastic solutions of transversely isotropic substrate.

(1) The correlation coefficients in thermoelastic solutions of transversely isotropic substrate.

$$\begin{aligned} s_{0}^{{\prime }} & = \sqrt {{{c_{66}^{{\prime }} } \mathord{\left/ {\vphantom {{c_{66}^{{\prime }} } {c_{44}^{{\prime }} }}} \right. \kern-\nulldelimiterspace} {c_{44}^{{\prime }} }}} \\ s_{3}^{{\prime }} & = \sqrt {{{\kappa_{11}^{{\prime }} } \mathord{\left/ {\vphantom {{\kappa_{11}^{{\prime }} } {\kappa_{33}^{{\prime }} }}} \right. \kern-\nulldelimiterspace} {\kappa_{33}^{{\prime }} }}} \\ \end{aligned}$$
(A-1)

\(s_{j}^{\prime } ,(j = 1,2)\) are the roots of the equation

$$a_{0}^{\prime } s^{\prime 4} - b_{0}^{\prime } s^{\prime 2} + c_{0}^{\prime } = 0$$
(A-2)

with positive real part, in which

$$\begin{aligned} a^{\prime}_{0} & = c^{\prime}_{33} c^{\prime}_{44} \\ b^{\prime}_{0} & = c^{\prime}_{11} c^{\prime}_{33} + c^{\prime2}_{44} - \left( {c^{\prime}_{13} + c^{\prime}_{44} } \right)^{2} \\ c^{\prime}_{0} & = c^{\prime}_{11} c^{\prime}_{44} \\ a^{\prime}_{1} & = \beta^{\prime}_{1} c^{\prime}_{44} \\ b^{\prime}_{1} & = - \beta^{\prime}_{3} \left( {c^{\prime}_{13} + c^{\prime}_{44} } \right) + \beta^{\prime}_{1} c^{\prime}_{33} \\ \end{aligned}$$
$$\begin{aligned} a^{\prime}_{2} & = \beta^{\prime}_{1} \left( {c^{\prime}_{13} + c^{\prime}_{44} } \right) - \beta^{\prime}_{3} c^{\prime}_{11} \\ b^{\prime}_{2} & = - \beta^{\prime}_{3} c^{\prime}_{44} \\ \lambda^{\prime}_{kj} & = - a^{\prime}_{k} + b^{\prime}_{k} s^{\prime2}_{j} ,\left( {k = 1,2,j = 1,2,3} \right) \\ \end{aligned}$$
$$\begin{aligned} \lambda^{\prime}_{33} & = a^{\prime}_{0} s^{\prime4}_{3} - b^{\prime}_{0} s^{\prime2}_{3} + c^{\prime}_{0} \\ \eta_{1j} & = {{\lambda^{\prime}_{2j} s^{\prime}_{j} } \mathord{\left/ {\vphantom {{\lambda^{\prime}_{2j} s^{\prime}_{j} } {\lambda^{\prime}_{1j} }}} \right. \kern-\nulldelimiterspace} {\lambda^{\prime}_{1j} }} \\ \eta_{2j} & = c^{\prime}_{33} \eta_{1j} s^{\prime}_{j} + c^{\prime}_{13} + \beta^{\prime}_{3} \eta_{4j} \\ \eta_{3j} & = c^{\prime}_{44} \left( {s^{\prime}_{j} - \eta_{1j} } \right) \\ \eta_{41} & = \eta_{42} = 0 \\ \eta_{43} & = {{\lambda^{\prime}_{33} } \mathord{\left/ {\vphantom {{\lambda^{\prime}_{33} } {\lambda^{\prime}_{31} }}} \right. \kern-\nulldelimiterspace} {\lambda^{\prime}_{31} }} \\ \varsigma_{j} & = c^{\prime}_{11} m^{2} + c^{\prime}_{12} n^{2} + c^{\prime}_{{{1}3}} \alpha^{2} \eta_{1j} s^{\prime}_{j} + \beta^{\prime}_{1} \alpha^{2} \eta_{4j} \\ \end{aligned}$$

(2) The constants closely related to the material constants of 1D hexagonal QCs.

$$s_{0} = \sqrt {{{c_{66} } \mathord{\left/ {\vphantom {{c_{66} } {c_{44} }}} \right. \kern-\nulldelimiterspace} {c_{44} }}} ,\quad s_{4} = \sqrt {{{\kappa_{11} } \mathord{\left/ {\vphantom {{\kappa_{11} } {\kappa_{33} }}} \right. \kern-\nulldelimiterspace} {\kappa_{33} }}} .$$
(A-3)

The constants \(s_{i} \left( {i = 1,2,3} \right)\) are the eigen-value with a positive real part of the following characteristic equation

$$n_{1} s^{6} - n_{2} s^{4} + n_{3} s^{2} - n_{4} = 0$$
(A-4)

where

$$\begin{aligned} n_{1} & = - c_{44} \left( {R_{2}^{2} - c_{33} K_{1} } \right) \\ n_{2} & = - c_{33} \left[ {\left( {R_{1} + R_{3} } \right)^{2} - c_{44} K_{2} } \right] + K_{1} \left[ {c_{11} c_{33} + c_{44}^{2} - \left( {c_{13} + c_{44} } \right)^{2} } \right] \\ & \quad - R_{2} \left[ {2c_{44} R_{3} + c_{11} R_{2} - 2\left( {c_{13} + c_{14} } \right)\left( {R_{1} + R_{3} } \right)} \right] \\ n_{3} & = - c_{44} \left[ {\left( {R_{1} + R_{3} } \right)^{2} - c_{11} K_{1} } \right] + K_{2} \left[ {c_{11} c_{33} + c_{44}^{2} - \left( {c_{13} + c_{44} } \right)^{2} } \right] \\ & \quad - R_{3} \left[ {2c_{11} R_{2} + c_{44} R_{3} - 2\left( {c_{13} + c_{44} } \right)\left( {R_{1} + R_{3} } \right)} \right] \\ n_{4} & = - c_{11} \left( {R_{3}^{2} - c_{44} K_{2} } \right) \\ \end{aligned}$$

The constants involved in the general solutions (12, 13) are defined as

$$\begin{aligned} \alpha_{1i} & = - \frac{{\lambda_{2i} s_{i} }}{{\lambda_{1i} }},\quad \alpha_{2i} = - \frac{{\lambda_{3i} s_{i} }}{{\lambda_{1i} }},\quad \alpha_{31} = \alpha_{32} = \alpha_{33} = 0,\quad \alpha_{34} = - \frac{{\lambda_{44} }}{{\lambda_{14} }} \\ \gamma_{1i} & = c_{33} \alpha_{1i} s_{i} + R_{2} \alpha_{2i} s_{i} + c_{13} - \beta_{3} \alpha_{3i} \\ \gamma_{2i} & = R_{2} \alpha_{1i} s_{i} + K_{1} \alpha_{2i} s_{i} + R_{1} \\ \gamma_{3i} & = c_{11} m^{2} + c_{12} n^{2} + c_{13} \alpha^{2} \alpha_{1i} s_{i} + R_{1} \alpha^{2} \alpha_{2i} s_{i} - \beta_{1} \alpha^{2} \alpha_{3i} \\ \upsilon_{1i} & = c_{44} \left( {\alpha_{1i} - s_{i} } \right) + R_{3} \alpha_{2i} \\ \upsilon_{2i} & = R_{3} \left( {\alpha_{1i} - s_{i} } \right) + K_{2} \alpha_{2i} \\ \end{aligned}$$
(A-5)

in which

$$\begin{aligned} \lambda_{ji} & = a_{j} - b_{j} s_{i}^{2} + c_{j} s_{i}^{4} ,\quad \left( {i = 1,2,3,4;\quad j = 1,2,3} \right) \\ \lambda_{44} & = n_{1} s_{4}^{6} - n_{2} s_{4}^{4} + n_{3} s_{4}^{2} - n_{4} \\ \end{aligned}$$

with the auxiliary aj, bj and cj being

$$\begin{aligned} a_{1} & = \beta_{1} \left( {c_{44} K_{2} - R_{3}^{2} } \right) \\ b_{1} & = \beta_{1} \left( {c_{44} K_{1} + c_{33} K_{2} - 2R_{2} R_{3} } \right) + \beta_{3} \left[ {R_{3} \left( {R_{1} + R_{3} } \right) - K_{2} \left( {c_{13} + c_{44} } \right)} \right] \\ c_{1} & = \beta_{1} \left( {c_{33} K_{1} - R_{2}^{2} } \right) + \beta_{3} \left[ {R_{2} \left( {R_{1} + R_{3} } \right) - K_{1} \left( {c_{13} + c_{44} } \right)} \right] \\ a_{2} & = \beta_{1} \left[ {R_{3} \left( {R_{1} + R_{3} } \right) - K_{2} \left( {c_{13} + c_{44} } \right)} \right] + \beta_{3} c_{11} K_{2} \\ b_{2} & = \beta_{1} \left[ {R_{2} \left( {R_{1} + R_{3} } \right) - K_{1} \left( {c_{13} + c_{44} } \right)} \right] + \beta_{3} \left[ {c_{11} K_{1} + c_{44} K_{2} - \left( {R_{1} + R_{3} } \right)^{2} } \right] \\ c_{2} & = \beta_{3} c_{44} K_{1} \\ a_{3} & = \beta_{1} \left( {c_{13} R_{3} - c_{44} R_{1} } \right) - \beta_{3} c_{11} R_{3} \\ b_{3} & = \beta_{1} \left[ {R_{2} \left( {c_{13} + c_{44} } \right) - c_{33} \left( {R_{1} + R_{3} } \right)} \right] + \beta_{3} \left[ {c_{13} R_{3} - c_{11} R_{2} + R_{1} \left( {c_{13} + c_{44} } \right)} \right] \\ c_{3} & = - \beta_{3} c_{44} R_{2} \\ \end{aligned}$$

Appendix B

The expressions of \(\chi_{i} ,\xi_{j} ,D_{jk}\) in Eqs. (12, 13, 16) are given as follows

$$\begin{aligned} \chi_{{u_{x} 0}} & = inA_{0} (m,n)e^{{ - \alpha s_{0} z}} + in\overline{{A_{0} }} (m,n)e^{{\alpha s_{0} z}} \\ \chi_{{u_{x} k}} & = - imA_{k} (m,n)e^{{ - \alpha s_{k} z}} - im\overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{u_{y} 0}} & = - imA_{0} (m,n)e^{{ - \alpha s_{0} z}} - im\overline{{A_{0} }} (m,n)e^{{\alpha s_{0} z}} \\ \chi_{{u_{y} k}} & = - inA_{k} (m,n)e^{{ - \alpha s_{k} z}} - in\overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{u_{z} k}} & = - \alpha \alpha_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} + \alpha \alpha_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{w_{z} k}} & = - \alpha \alpha_{2k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} + \alpha \alpha_{2k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{\sigma_{xx} 0}} & = - 2mnc_{66} A_{0} (m,n)e^{{ - \alpha s_{0} z}} - 2mnc_{66} A_{0} (m,n)e^{{\alpha s_{0} z}} \\ \chi_{{\sigma_{xx} k}} & = \gamma_{3k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} \; + \gamma_{3k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{\sigma_{zz} k}} & = \alpha^{2} \gamma_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} + \alpha^{2} \gamma_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{\sigma_{zx} 0}} & = - in\alpha c_{44} s_{0} A_{0} (m,n)e^{{ - \alpha s_{0} z}} + in\alpha c_{44} s_{0} \overline{{A_{0} }} (m,n)e^{{\alpha s_{0} z}} \\ \chi_{{\sigma_{zx} k}} & = - im\alpha \upsilon_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} + im\alpha \upsilon_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{\sigma_{zy} 0}} & = im\alpha c_{44} s_{0} A_{0} (m,n)e^{{ - \alpha s_{0} z}} - im\alpha c_{44} s_{0} \overline{{A_{0} }} (m,n)e^{{\alpha s_{0} z}} \\ \chi_{{\sigma_{zy} k}} & = - in\alpha \upsilon_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} + in\alpha \upsilon_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{{H_{zx} 0}} & = - in\alpha R_{3} s_{0} A_{0} (m,n)e^{{ - \alpha z_{0} }} + in\alpha R_{3} s_{0} \overline{{A_{0} }} (m,n)e^{{\alpha z_{0} }} \\ \chi_{{H_{zx} k}} &= - im\alpha \upsilon_{2k} A_{k} (m,n)e^{{ - \alpha z_{k} }} + im\alpha \upsilon_{2k} \overline{{A_{k} }} (m,n)e^{{\alpha z_{k} }} \\ \chi_{{H_{zy} 0}} &= im\alpha R_{3} s_{0} A_{0} (m,n)e^{{ - \alpha z_{0} }} - im\alpha R_{3} s_{0} \overline{{A_{0} }} (m,n)e^{{\alpha z_{0} }} \\ \chi_{{H_{zy} k}} &= - in\alpha \upsilon_{2k} A_{k} (m,n)e^{{ - \alpha z_{k} }} + in\alpha \upsilon_{2k} \overline{{A_{k} }} (m,n)e^{{\alpha z_{k} }} \\ \end{aligned}$$
(B-1)
$$\begin{aligned} \chi_{{H_{zz} k}} & = \alpha^{2} \gamma_{2k} A_{k} (m,n)e^{{ - \alpha s_{k} z}} + \alpha^{2} \gamma_{2k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} z}} \\ \chi_{Tk} & = 0,(k = 1,2,3) \\ \chi_{T4} & = \alpha^{2} \alpha_{34} A_{4} (m,n)e^{{ - \alpha s_{4} z}} + \alpha^{2} \alpha_{34} \overline{{A_{4} }} (m,n)e^{{\alpha s_{4} z}} \\ k & = 1,2,3,4 \\ \xi_{{u^{\prime}_{z} j}} & = - \alpha \eta_{1j} B_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{u^{\prime}_{x} 0}} & = inB_{0} (m,n)e^{{ - \alpha s^{\prime}_{0} z^{\prime}}} \\ \xi_{{u^{\prime}_{x} j}} & = - imB_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{u^{\prime}_{y} 0}} & = - imB_{0} (m,n)e^{{ - \alpha s^{\prime}_{0} z^{\prime}}} \\ \xi_{{u^{\prime}_{y} j}} & = - inB_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{xx} 0}} & = - 2mnc_{66} B_{0} (m,n)e^{{ - \alpha s^{\prime}_{0} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{xx} j}} & = \varsigma_{j} B_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{zz} j}} & = \alpha^{2} \eta_{2j} B_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{zx} 0}} & = - in\alpha c^{\prime}_{44} s^{\prime}_{0} B_{0} (m,n)e^{{ - \alpha s^{\prime}_{0} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{zx} j}} & = im\alpha \eta_{3j} B_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{zy} 0}} & = im\alpha c^{\prime}_{44} s^{\prime}_{0} B_{0} (m,n)e^{{ - \alpha s^{\prime}_{0} z^{\prime}}} \\ \xi_{{\sigma^{\prime}_{zy} j}} & = in\alpha \eta_{3j} B_{j} (m,n)e^{{ - \alpha s^{\prime}_{j} z^{\prime}}} \\ \xi_{{T^{\prime}j}} & = 0,(j = 1,2) \\ \xi_{{T^{\prime}3}} & = \alpha^{2} \eta_{43} B_{3} (m,n)e^{{ - \alpha s_{3} z^{\prime}}} \\ j & = 1,2,3 \\ \end{aligned}$$
(B-2)

where the coefficients \(s_{k} ,\alpha_{ij} ,\gamma_{ij} ,\upsilon_{ij} ,s^{\prime}_{j} ,\eta_{ij} ,\varsigma_{k}\) are given in Appendix A.

$$\begin{aligned} D_{1k} & = t_{x} A_{k} (m,n)e^{{ - \alpha s_{k} h}} + t_{x} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} h}} + B_{k} ,\quad (k = 1,2) \\ D_{13} & = t_{x} A_{3} (m,n)e^{{ - \alpha s_{3} h}} + t_{x} \overline{{A_{3} }} (m,n)e^{{\alpha s_{3} h}} \\ D_{2k} & = t_{z} \alpha_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} h}} - t_{z} \alpha_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} h}} - \eta_{1k} B_{k} ,\quad (k = 1,2) \\ D_{23} & = t_{z} \alpha_{13} A_{3} (m,n)e^{{ - \alpha s_{3} h}} - t_{z} \alpha_{13} \overline{{A_{3} }} (m,n)e^{{\alpha s_{3} h}} \\ D_{3k} & = - \alpha_{2k} A_{k} (m,n)e^{{ - \alpha s_{k} h}} + \alpha_{2k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} h}} ,\quad (k = 1,2,3) \\ D_{4k} & = \gamma_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} h}} + \gamma_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} h}} - \eta_{2k} B_{k} ,\quad (k = 1,2) \\ D_{43} & = \gamma_{13} A_{3} (m,n)e^{{ - \alpha s_{3} h}} + \gamma_{13} \overline{{A_{3} }} (m,n)e^{{\alpha s_{3} h}} \\ D_{5k} & = - \upsilon_{1k} A_{k} (m,n)e^{{ - \alpha s_{k} h}} + \upsilon_{1k} \overline{{A_{k} }} (m,n)e^{{\alpha s_{k} h}} - \eta_{3k} B_{k} ,\quad (k = 1,2) \\ D_{53} & = - \upsilon_{13} A_{3} (m,n)e^{{ - \alpha s_{3} h}} + \upsilon_{13} \overline{{A_{3} }} (m,n)e^{{\alpha s_{3} h}} \\ D_{6k} = & \gamma_{2k} A_{k} (m,n) + \gamma_{2k} \overline{{A_{k} }} (m,n),\quad (k = 1,2,3) \\ D_{7k} & = - \upsilon_{1k} A_{k} (m,n) + \upsilon_{1k} \overline{{A_{k} }} (m,n),\quad (k = 1,2,3) \\ D_{8k} & = \gamma_{1k} A_{k} (m,n) + \gamma_{1k} \overline{{A_{k} }} (m,n),\quad (k = 1,2,3) \\ \end{aligned}$$
(B-3)

The coefficients in the Eqs. (17) are given as follows

$$\begin{aligned} h_{pk} & = w_{{\left( {p + 1} \right)k}} - \frac{{w_{{\left( {p + 1} \right)4}} }}{{w_{14} }}w_{1k} e^{{ - \alpha \left( {s_{k} + s_{1} } \right)h}} ,\quad \left( {p = 1,2,3;k = 1,2,3} \right) \\ h_{p4} & = w_{{\left( {p + 1} \right)5}} - \frac{{w_{{\left( {p + 1} \right)4}} }}{{w_{14} }}w_{15} e^{{ - \alpha s_{1} h}} ,\quad \left( {p = 1,2,3} \right) \\ w_{1r} & = t_{2j} - \frac{{t_{25} }}{{t_{15} }}t_{1j} ,\quad \left( {r = j = 1,2,3,4} \right)w_{15} = t_{26} - \frac{{t_{25} }}{{t_{15} }}t_{16} , \\ w_{lr} & = t_{{\left( {l + 1} \right)j}} - \frac{{t_{{\left( {l + 1} \right)5}} }}{{t_{15} }}t_{1j} e^{{ - \alpha \left( {s_{k} + s_{2} } \right)h}} ,\quad \left( {l = 2,3,4;r = j = k = 1,2,3} \right) \\ w_{l4} & = t_{{\left( {l + 1} \right)4}} - \frac{{t_{{\left( {l + 1} \right)5}} }}{{t_{15} }}t_{14} e^{{\alpha \left( {s_{1} - s_{2} } \right)h}} ,\quad \left( {l = 2,3,4} \right) \\ w_{l5} & = t_{{\left( {l + 1} \right)6}} - \frac{{t_{{\left( {l + 1} \right)5}} }}{{t_{15} }}t_{16} e^{{ - \alpha s_{2} h}} ,\quad \left( {l = 2,3,4} \right) \\ t_{lj} & = g_{lj} + \frac{{g_{l6} \alpha_{2k} }}{{\alpha_{23} }},\quad \left( {k = j = 1,2,3;l = 1,2} \right) \\ t_{lj} & = g_{lj} - \frac{{g_{l6} \alpha_{2k} }}{{\alpha_{23} }},\quad \left( {l = 1,2;k = 1,2;j = k + 3} \right) \\ t_{l6} & = g_{l7} - \frac{{g_{l6} }}{{\alpha_{23} }}g_{3} ,\quad \left( {l = 1,2} \right) \\ t_{3j} & = \gamma_{2k} + \frac{{\gamma_{23} }}{{\alpha_{23} }}\alpha_{2k} e^{{ - \alpha \left( {s_{k} + s_{3} } \right)h}} ,\quad \left( {k = j = 1,2,3} \right) \\ t_{3j} & = \gamma_{2k} - \frac{{\gamma_{23} }}{{\alpha_{23} }}\alpha_{2k} e^{{\alpha \left( {s_{k} - s_{3} } \right)h}} ,\quad \left( {k = 1,2;j = k + 3} \right) \\ t_{36} & = g_{6} - \frac{{\gamma_{23} }}{{\alpha_{23} }}g_{3} e^{{ - \alpha s_{3} h}} \\ t_{4j} & = - \upsilon_{1k} + \frac{{\upsilon_{13} }}{{\alpha_{23} }}\alpha_{2k} e^{{ - \alpha \left( {s_{k} + s_{3} } \right)h}} ,\quad \left( {k = j = 1,2,3} \right) \\ t_{4j} & = \upsilon_{1k} - \frac{{\upsilon_{13} }}{{\alpha_{23} }}\alpha_{2k} e^{{\alpha \left( {s_{k} - s_{3} } \right)h}} ,\quad \left( {k = 1,2;j = k + 3} \right) \\ t_{46} & = g_{7} - \frac{{\upsilon_{13} }}{{\alpha_{23} }}g_{3} e^{{ - \alpha s_{3} h}} \\ t_{5j} & = \gamma_{1k} + \frac{{\gamma_{13} }}{{\alpha_{23} }}\alpha_{2k} e^{{ - \alpha \left( {s_{k} + s_{3} } \right)h}} ,\quad \left( {k = j = 1,2,3} \right) \\ t_{5j} & = \gamma_{1k} - \frac{{\gamma_{13} }}{{\alpha_{23} }}\alpha_{2k} e^{{\alpha \left( {s_{k} - s_{3} } \right)h}} ,\quad \left( {k = 1,2;j = k + 3} \right) \\ \end{aligned}$$
(B-4)
$$\begin{aligned} t_{56} & = g_{8} - \frac{{\gamma_{13} }}{{\alpha_{23} }}g_{3} e^{{ - \alpha s_{3} h}} \\ {\text{g}}_{1j} & = \gamma_{1k} - \frac{{\eta_{21} \left( {t_{z} \alpha_{1k} - \eta_{12} t_{x} } \right)}}{{\eta_{11} - \eta_{12} }} - \frac{{\eta_{22} \left( {t_{z} \alpha_{1k} - \eta_{11} t_{x} } \right)}}{{\eta_{12} - \eta_{11} }},\left( {k = j = 1,2,3} \right) \\ {\text{g}}_{1j} & = \gamma_{1k} - \frac{{\eta_{21} \left( { - t_{z} \alpha_{1k} - \eta_{12} t_{x} } \right)}}{{\eta_{11} - \eta_{12} }} - \frac{{\eta_{22} \left( { - t_{z} \alpha_{1k} - \eta_{11} t_{x} } \right)}}{{\eta_{12} - \eta_{11} }},\left( {k = 1,2,3;j = k + 3} \right) \\ {\text{g}}_{2j} & = - \upsilon_{1k} - \frac{{\eta_{31} \left( {t_{z} \alpha_{1k} - \eta_{12} t_{x} } \right)}}{{\eta_{11} - \eta_{12} }} - \frac{{\eta_{32} \left( {t_{z} \alpha_{1k} - \eta_{11} t_{x} } \right)}}{{\eta_{12} - \eta_{11} }},\left( {k = j = 1,2,3} \right) \\ {\text{g}}_{2j} & = \upsilon_{1k} - \frac{{\eta_{31} \left( { - t_{z} \alpha_{1k} - \eta_{12} t_{x} } \right)}}{{\eta_{11} - \eta_{12} }} - \frac{{\eta_{32} \left( { - t_{z} \alpha_{1k} - \eta_{11} t_{x} } \right)}}{{\eta_{12} - \eta_{11} }},\left( {k = 1,2,3;j = k + 3} \right) \\ g_{17} & = g_{4} + \frac{{\eta_{21} \left( {\eta_{12} g_{1} - g_{2} } \right)}}{{\eta_{11} - \eta_{12} }} + \frac{{\eta_{22} \left( {\eta_{11} g_{1} - g_{2} } \right)}}{{\eta_{12} - \eta_{11} }} \\ g_{27} & = g_{5} + \frac{{\eta_{31} \left( {\eta_{12} g_{1} - g_{2} } \right)}}{{\eta_{11} - \eta_{12} }} + \frac{{\eta_{32} \left( {\eta_{11} g_{1} - g_{2} } \right)}}{{\eta_{12} - \eta_{11} }} \\ g_{1} & = B_{3} - \frac{{t_{x} \eta_{43} }}{{\alpha_{34} }}B_{3} \\ g_{2} & = (\eta_{13} - \frac{{t_{z} \alpha_{14} \kappa^{\prime}_{33} \eta_{43} s^{\prime}_{3} }}{{\kappa_{33} \alpha_{34} s_{4} }})B_{3} \\ g_{3} & = \frac{{\alpha_{24} \kappa^{\prime}_{33} \eta_{43} s^{\prime}_{3} }}{{\kappa_{33} \alpha_{34} s_{4} }}B_{3} \\ g_{4} & = (\eta_{23} - \frac{{\gamma_{14} \eta_{43} }}{{\alpha_{34} }})B_{3} g_{5} = (\eta_{33} + \frac{{\upsilon_{14} \kappa^{\prime}_{33} \eta_{43} s^{\prime}_{3} }}{{\kappa_{33} \alpha_{34} s_{4} }})B_{3} \\ g_{6} & = - \gamma_{24} (A_{4} + \overline{{A_{4} }} ) \\ g_{7} & = \upsilon_{14} (A_{4} - \overline{{A_{4} }} ) + \frac{{imf\mathop p\limits^{ \approx } }}{{\alpha^{3} }} \\ g_{8} & = - \gamma_{14} (A_{4} + \overline{{A_{4} }} ) - \frac{{\mathop p\limits^{ \approx } }}{{\alpha^{2} }} \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Ding, S., Chen, Q. et al. The thermoelastic contact problem of one-dimensional hexagonal quasicrystal layer with interfacial imperfections. Arch Appl Mech 93, 707–729 (2023). https://doi.org/10.1007/s00419-022-02294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02294-z

Keywords

Navigation